Endothelium-dependent responses in carotid and renal arteries of normotensive and hypertensive rats.

Author:

Lüscher T F1,Diederich D1,Weber E1,Vanhoutte P M1,Bühler F R1

Affiliation:

1. Department of Research, University Hospital, Basel, Switzerland.

Abstract

Endothelium-dependent relaxations are impaired in the aorta of various models of hypertension, but no data are available regarding the cerebral or renal circulation. Endothelium-dependent relaxations were studied in the carotid and renal artery of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Rings with and without endothelium were suspended in organ chambers for isometric tension recording. Acetylcholine and adenosine 5'-diphosphate (ADP) caused endothelium-dependent relaxations in both arteries that were impaired in the carotid, but not in the renal artery, of the SHR, similar to those to the endothelium-independent vasodilator sodium nitroprusside. Indomethacin did not affect relaxations to acetylcholine in the carotid artery, but it significantly augmented them in the renal artery. This finding suggests that an impaired vascular responsiveness to endothelium-derived relaxing factor is responsible for the decreased relaxations in the carotid artery of the SHR. In the renal artery, acetylcholine appears to release both endothelium-derived relaxing factor and a vasoconstrictor prostanoid. Carotid arteries of SHR were more sensitive to the constrictor effects of serotonin than were those of WKY. Endothelium removal caused a twofold to eightfold increase in sensitivity to serotonin in both strains. Thus, endothelium-dependent relaxations to acetylcholine and ADP are reduced and constrictions to serotonin are enhanced in the carotid, but not in the renal, artery of the SHR.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3