In Vivo klotho Gene Transfer Ameliorates Angiotensin II-Induced Renal Damage

Author:

Mitani Haruo1,Ishizaka Nobukazu1,Aizawa Toru1,Ohno Minoru1,Usui Shin-ichi1,Suzuki Toru1,Amaki Toshihiro1,Mori Ichiro1,Nakamura Yasushi1,Sato Misako1,Nangaku Masaomi1,Hirata Yasunobu1,Nagai Ryozo1

Affiliation:

1. From the Department of Cardiovascular Medicine (H.M., N.I., T.A, M.O., S.U., T.S., T.A., Y.H., RN), Department of Nephrology and Metabolic Diseases (M.N.), University of Tokyo Graduate School of Medicine, Tokyo, Japan; and Department of Pathology, Wakayama Medical University (I.M., Y.N., MS) Wakayama, Japan.

Abstract

The klotho gene, originally identified by insertional mutagenesis in mice, suppresses the expression of multiple aging-associated phenotypes. This gene is predominantly expressed in the kidney. Recent studies have shown that expression of renal klotho gene is regulated in animal models of metabolic diseases and in humans with chronic renal failure. However, little is known about the mechanisms and the physiological relevance of the regulation of the expression of the klotho gene in the kidney in some diseased conditions. In the present study, we first investigated the role of angiotensin II in the regulation of renal klotho gene expression. Long-term infusion of angiotensin II downregulated renal klotho gene expression at both the mRNA and protein levels. This angiotensin II-induced renal klotho downregulation was an angiotensin type 1 receptor-dependent but pressor-independent event. Adenovirus harboring mouse klotho gene (ad-klotho, 3.3×10 10 plaque forming units) was also intravenously administered immediately before starting angiotensin II infusion in some rats. This resulted in a robust induction of Klotho protein in the liver at day 4, which was still detectable 14 days after the gene transfer. Ad-klotho gene transfer, but not ad-lacZ gene transfer, caused an improvement of creatinine clearance, decrease in urinary protein excretion, and amelioration of histologically demonstrated tubulointerstitial damage induced by angiotensin II administration. Our data suggest that downregulation of the renal klotho gene may have an aggravative role in the development of renal damage induced by angiotensin II, and that induction of the klotho gene may have therapeutic possibilities in treating angiotensin II-induced end organ damage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3