Affiliation:
1. From the Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.
Abstract
Reactive oxygen species (ROS) are key mediators in signal transduction of angiotensin II (Ang II). However, roles of vascular mitochondria, a major intracellular ROS source, in response to Ang II stimuli have not been elucidated. This study aimed to examine the involvement of mitochondria-derived ROS in the signaling pathway and the vasoconstrictor mechanism of Ang II. Using 5-hydroxydecanoate (5-HD; a specific inhibitor of mitochondrial ATP-sensitive potassium [mitoK
ATP
] channels) and tempol (a superoxide dismutase mimetic), the effects of Ang II and diazoxide (a mitoK
ATP
channel opener) were compared on redox-sensitive mitogen-activated protein (MAP) kinase activation in rat vascular smooth muscle cells (RVSMCs) in vitro and in rat aorta in vivo. Stimulation of RVSMCs by Ang II or diazoxide increased phosphorylated MAP kinases (ERK1/2, p38, and JNK), as well as superoxide production, which were then suppressed by 5-HD pretreatment in a dose-dependent manner, except for ERK1/2 activation by Ang II. The same events were reproduced in rat aorta in vivo. Ang II-like diazoxide depolarized the mitochondrial membrane potential (ΔΨ
M
) of RVSMCs determined by JC-1 fluorescence, which was inhibited by 5-HD. 5-HD did not modulate Ang II–induced calcium mobilization in RVSMCs and did not affect on the vasoconstrictor effect in either acute or chronic phases of Ang II–induced hypertension. These results reveal that Ang II stimulates mitochondrial ROS production through the opening of mitoK
ATP
channels in the vasculature-like diazoxide, leading to reduction of ΔΨ
M
and redox-sensitive activation of MAP kinase; however, generated ROS from mitochondria do not contribute to Ang II–induced vasoconstriction.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
197 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献