Mitochondria-Derived Reactive Oxygen Species and Vascular MAP Kinases

Author:

Kimura Shoji1,Zhang Guo-Xing1,Nishiyama Akira1,Shokoji Takatomi1,Yao Li1,Fan Yu-Yan1,Rahman Matlubur1,Abe Youichi1

Affiliation:

1. From the Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.

Abstract

Reactive oxygen species (ROS) are key mediators in signal transduction of angiotensin II (Ang II). However, roles of vascular mitochondria, a major intracellular ROS source, in response to Ang II stimuli have not been elucidated. This study aimed to examine the involvement of mitochondria-derived ROS in the signaling pathway and the vasoconstrictor mechanism of Ang II. Using 5-hydroxydecanoate (5-HD; a specific inhibitor of mitochondrial ATP-sensitive potassium [mitoK ATP ] channels) and tempol (a superoxide dismutase mimetic), the effects of Ang II and diazoxide (a mitoK ATP channel opener) were compared on redox-sensitive mitogen-activated protein (MAP) kinase activation in rat vascular smooth muscle cells (RVSMCs) in vitro and in rat aorta in vivo. Stimulation of RVSMCs by Ang II or diazoxide increased phosphorylated MAP kinases (ERK1/2, p38, and JNK), as well as superoxide production, which were then suppressed by 5-HD pretreatment in a dose-dependent manner, except for ERK1/2 activation by Ang II. The same events were reproduced in rat aorta in vivo. Ang II-like diazoxide depolarized the mitochondrial membrane potential (ΔΨ M ) of RVSMCs determined by JC-1 fluorescence, which was inhibited by 5-HD. 5-HD did not modulate Ang II–induced calcium mobilization in RVSMCs and did not affect on the vasoconstrictor effect in either acute or chronic phases of Ang II–induced hypertension. These results reveal that Ang II stimulates mitochondrial ROS production through the opening of mitoK ATP channels in the vasculature-like diazoxide, leading to reduction of ΔΨ M and redox-sensitive activation of MAP kinase; however, generated ROS from mitochondria do not contribute to Ang II–induced vasoconstriction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3