Effects of Pressure Overload on Extracellular Matrix Expression in the Heart of the Atrial Natriuretic Peptide–Null Mouse

Author:

Wang Dajun1,Oparil Suzanne1,Feng Ji An1,Li Peng1,Perry Gilbert1,Chen Lan Bo1,Dai Meiru1,John Simon W.M.1,Chen Yiu-Fai1

Affiliation:

1. From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (D.W., S.O., J.A.F., P.L. G.P., Y.-F.C.); the Cardiology Section, Birmingham VA Medical Center (G.P.), Birmingham, Ala; the Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School (L.B.C., M.D.), Boston, Mass; and the Howard Hughes Medical Institute and Jackson Laboratory (S.W.M.J.), Bar Harbor, Me.

Abstract

This study tested the hypothesis that atrial natriuretic peptide has direct antihypertrophic actions on the heart by modulating expression of genes involved in cardiac hypertrophy and extracellular matrix production. Hearts of male, atrial natriuretic peptide–null and control wild-type mice that had been subjected to pressure overload after transverse aortic constriction and control unoperated hearts were weighed and subjected to microarray, Northern blot, and immunohistochemical analyses. Microarray and Northern blot analyses were used to identify genes that are regulated differentially in response to stress in the presence and absence of atrial natriuretic peptide. Immunohistochemical analysis was used to identify and localize expression of the protein products of these genes. Atrial natriuretic peptide–null mice demonstrated cardiac hypertrophy at baseline and an exaggerated hypertrophic response to transverse aortic constriction associated with increased expression of the extracellular matrix molecules periostin, osteopontin, collagen I and III, and thrombospondin, as well as the extracellular matrix regulatory proteins, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3, and the novel growth factor pleiotrophin compared with wild-type controls. These results support the hypothesis that atrial natriuretic peptide protects against pressure overload–induced cardiac hypertrophy and remodeling by negative modulation of genes involved in extracellular matrix deposition.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3