Angiotensin II Type 1 Receptor Blockade Attenuates In-Stent Restenosis by Inhibiting Inflammation and Progenitor Cells

Author:

Ohtani Kisho1,Egashira Kensuke1,Ihara Yoshiko1,Nakano Kaku1,Funakoshi Kouta1,Zhao Gang1,Sata Masataka1,Sunagawa Kenji1

Affiliation:

1. From the Department of Cardiovascular Medicine (K.O., K.E., G.Z., Y.I., K.F., K.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and the Department of Cardiovascular Medicine (M.S.), Graduate School of Medical Sciences, University of Tokyo, Tokyo, Japan.

Abstract

The precise mechanism by which angiotensin II type 1 receptor blocker reduces in-stent restenosis in clinical trials is unclear. We, therefore, investigated the mechanism of in-stent neointima formation. Male cynomolgus monkeys and rabbits were fed a high-cholesterol diet and were allocated to untreated control and type 1 receptor blocker groups. Five days after grouping, multilink stents were implanted in the iliac artery. The type 1 receptor blocker reduced the development of in-stent neointima formation by ≈30% in rabbits and monkeys. To investigate potential mechanisms, we examined the expression of renin-angiotensin system markers, all of which increased in monocytes and smooth muscle-like cells in the neointima and media within 7 days. The type 1 receptor blocker attenuated increased oxidative stress, the enhanced expression of markers of the rennin-angiotensin system and monocyte chemoattractant protein-1, and macrophage infiltration. The effects of type 1 receptor blocker on the differentiation of peripheral blood mononuclear cells into vascular progenitor cells were also examined. Treatment with type 1 receptor blocker suppressed the enhanced differentiation to smooth muscle progenitor cells induced by stenting. The type 1 receptor blocker attenuated in-stent neointima formation by inhibiting redox-sensitive inflammatory changes and by reducing recruitment of the progenitor cells. These potential actions of type 1 receptor blocker on inflammation and progenitor cells constitute a novel mechanism of suppression of in-stent restenosis by type 1 receptor blocker.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3