Role of Crk-Associated Substrate in the Regulation of Vascular Smooth Muscle Contraction

Author:

Tang Dale D.1,Tan Jian1

Affiliation:

1. From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.

Abstract

A pool of actin monomers is induced to polymerize into actin filaments during contractile stimulation of smooth muscle. The inhibition of actin dynamics by actin polymerization inhibitors depresses active force generation in smooth muscle. In this study, we hypothesized that Crk-associated substrate plays a role in the regulation of contraction and actin dynamics in vascular smooth muscle. Antisense or sense oligodeoxynucleotides for Crk-associated substrate were introduced into carotid smooth muscle tissues by chemical loading. The treatment of smooth muscle strips with antisense oligodeoxynucleotides inhibited the expression of Crk-associated substrates; it did not influence the expression of actin, myosin heavy chain, and paxillin. Sense oligodeoxynucleotides did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in antisense-treated muscle strips than in sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The downregulation of Crk-associated substrate did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin in response to stimulation with norepinephrine. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in antisense-treated smooth muscle strips. Contractile activation of smooth muscle increased the association of profilin with actin monomers; the depletion of Crk-associated substrate inhibited the increases in the profilin-actin complex in response to contractile stimulation. These results suggest that Crk-associated substrate is a necessary molecule of signaling cascades that regulate active force generation in smooth muscle. This molecule may regulate actin dynamics in smooth muscle in response to contractile stimulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3