Affiliation:
1. From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.
Abstract
A pool of actin monomers is induced to polymerize into actin filaments during contractile stimulation of smooth muscle. The inhibition of actin dynamics by actin polymerization inhibitors depresses active force generation in smooth muscle. In this study, we hypothesized that Crk-associated substrate plays a role in the regulation of contraction and actin dynamics in vascular smooth muscle. Antisense or sense oligodeoxynucleotides for Crk-associated substrate were introduced into carotid smooth muscle tissues by chemical loading. The treatment of smooth muscle strips with antisense oligodeoxynucleotides inhibited the expression of Crk-associated substrates; it did not influence the expression of actin, myosin heavy chain, and paxillin. Sense oligodeoxynucleotides did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in antisense-treated muscle strips than in sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The downregulation of Crk-associated substrate did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin in response to stimulation with norepinephrine. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in antisense-treated smooth muscle strips. Contractile activation of smooth muscle increased the association of profilin with actin monomers; the depletion of Crk-associated substrate inhibited the increases in the profilin-actin complex in response to contractile stimulation. These results suggest that Crk-associated substrate is a necessary molecule of signaling cascades that regulate active force generation in smooth muscle. This molecule may regulate actin dynamics in smooth muscle in response to contractile stimulation.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献