Adipose Tissue Metabolism and CD11b Expression on Monocytes in Obese Hypertensives

Author:

Boschmann Michael1,Engeli Stefan1,Adams Frauke1,Gorzelniak Kerstin1,Franke Gabriele1,Klaua Susanne1,Kreuzberg Ursula1,Luedtke Susanne1,Kettritz Ralph1,Sharma Arya M.1,Luft Friedrich C.1,Jordan Jens1

Affiliation:

1. From the Franz-Volhard Clinical Research Center (M.B., S.E., F.A., K.G., G.F., S.K., S.L., R.K., F.C.L., J.J.), Charité Campus Buch and HELIOS Klinikum Berlin, Germany; Clinical Research and Development (U.K.), Novartis Pharma, Nürnberg, Germany; and Canada Research Chair for Cardiovascular Obesity Research and Management (A.M.S.), Department of Medicine, McMaster University, Hamilton, Ontario, Canada.

Abstract

At a given degree of adiposity, metabolic and cardiovascular risk varies markedly between individuals. Animal studies suggest that differentially expressed systemic activation of monocytes contributes to the obesity-associated risk variability. We tested the hypothesis that systemic monocyte activation is associated with changes in adipose tissue and skeletal muscle metabolism. In 17 obese hypertensive patients, we assessed CD11b expression on circulating monocytes, gene expression in adipose tissue biopsies, and obtained blood samples and adipose tissue and skeletal muscle microdialysis samples in the fasted state and during a glucose load. Patients were stratified into groups with higher and lower CD11b expression on monocytes. Expression of the macrophage marker CD68 was increased markedly in adipose tissue of subjects with higher CD11b expression. Although no differences in systemic insulin sensitivity were found between both groups, patients with higher peripheral CD11b expression showed a markedly augmented increase in dialysate glucose in adipose tissue during oral glucose tolerance testing and increased adipose tissue lipolysis as well. Our data demonstrate that human monocyte activation is associated with tissue-specific changes in glucose and lipid metabolism. These findings may be explained in part by monocyte/macrophage infiltration of adipose tissue, which appears to interfere with insulin responsiveness.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3