Increased Insulin Receptor Substrate 1 Serine Phosphorylation and Stress-Activated Protein Kinase/c-Jun N-Terminal Kinase Activation Associated With Vascular Insulin Resistance in Spontaneously Hypertensive Rats

Author:

Sugita Michiko1,Sugita Hiroki1,Kaneki Masao1

Affiliation:

1. From the Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston.

Abstract

Insulin resistance is associated with cardiovascular disease. Impaired insulin receptor substrate (IRS)–mediated signal transduction is a major contributor to insulin resistance. Recently, IRS-1 phosphorylation at serine 307 by stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) has been highlighted as a molecular event that causes insulin resistance. We investigated IRS-1–mediated insulin signaling, IRS-1 phosphorylation at serine 307, and SAPK/JNK activation status in the aorta of spontaneously hypertensive rats (SHR) by immunoprecipitation and immunoblotting. Insulin-stimulated tyrosine phosphorylation of insulin receptor and IRS-1 in SHR was decreased to 55% ( P <0.01) and 40% ( P <0.01) of the levels in Wistar-Kyoto rats (WKY), respectively. Insulin-stimulated IRS-1–associated phosphatidylinositol 3-kinase activation in SHR was reduced to 28% of the level in WKY ( P <0.0001). Immunoblot analysis revealed that phosphorylated IRS-1 at serine 307 in SHR was increased to 261% ( P <0.001) of the level in WKY. Phosphorylated (activated) SAPK/JNK in SHR was increased to 223% of the level in WKY ( P <0.01). Serine-phosphorylated IRS-1 that was immunoprecipitated from the aorta of SHR was capable of inhibiting in vitro tyrosine phosphorylation by recombinant insulin receptor compared with WKY-derived IRS-1. These findings demonstrate that insulin resistance in the aorta of SHR was associated with elevated IRS-1 phosphorylation at serine 307 and increased SAPK/JNK activation. The present study suggests that increased SAPK/JNK activation may play an important role in the pathogenesis of vascular insulin resistance via inhibitory serine phosphorylation of IRS-1.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3