Wall Stiffness Suppresses Akt/eNOS and Cytoprotection in Pulse-Perfused Endothelium

Author:

Peng Xinqi1,Haldar Saptarsi1,Deshpande Shailesh1,Irani Kaikobad1,Kass David A.1

Affiliation:

1. From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Md.

Abstract

Increased steady shear stress stimulates nitric oxide synthase (eNOS) in part by Akt-dependent phosphorylation. Arteries in vivo are exposed to pulse perfusion (PP) combining phasic shear with stretch. In compliant vessels, enhancing PP lowers vascular tone by stimulating eNOS; whereas in aged, stiff arteries, flow-mediated dilation declines and PP is a prominent risk factor. Here, we tested the hypothesis that reduced wall distensibility alters PP-induced eNOS/Akt mechano-signaling. Bovine aortic endothelial cells cultured within distensible tubes were exposed to physiological nonreversing steady or PP (7 dynes/cm 2 mean shear, pulse pressure 0 or 90 mm Hg×2 hours) in a custom servo-system. In compliant tubes, PP doubled Akt phosphorylation above nonpulsatile flow levels, whereas P-Akt declined to static levels from PP in stiffer tubes. eNOS phosphorylation (S-1179) similarly increased with PP in compliant tubes but was nearly undetectable with increased PP in stiffer tubes. After PP, brief exposure of cells to ultraviolet irradiation (oxidant stress) and subsequent culture revealed cytoprotection in compliant tubes but diffuse cytotoxicity and cell detachment in stiffer tubes. NOS inhibition by L-NAME converted compliant-tube post-UV behavior to that of stiffer tubes. These data provide novel evidence that wall compliance can directionally mediate endothelial Akt/eNOS phosphorylation and mechano-signaling. This may help explain increased vascular risks resulting from artery stiffening.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3