Brain injury from marked hypoxia in cats: role of hypotension and hyperglycemia.

Author:

de Courten-Myers G M,Yamaguchi S,Wagner K R,Ting P,Myers R E

Abstract

The present study identifies several factors that govern brain pathologic response to marked hypoxia. None of 13 cats exposed to 25 minutes of marked hypoxia (FiO2 = 3.4%; PaO2 = 17 +/- 3 mm Hg, S.D.) that maintained mean arterial blood pressure (MABP) greater than 65 mm Hg were brain injured after reoxygenation and long term survival. In contrast, 12 of 13 exposed to the same hypoxia but that experienced reductions in MABP less than 45 mm Hg for 4 +/- 1 minutes developed a pattern of brain injury closely resembling that of humans surviving in a persistent vegetative state after cardiorespiratory arrest. Higher serum glucose and lactate concentrations and lower blood pH values significantly correlated with development of hypotension during hypoxia. Four of 8 cats exposed to 21 minutes of marked hypoxia followed by 4 minutes of 100% N2 breathing that also led to hypotension similarly developed brain injury. Among the hypoxic/hypotensive cats the magnitude of the hyperglycemic response to hypoxia as modulated by 0, 1, or 2 days of preexposure fasting, strongly correlated with occurrence and extent of brain damage. Peak cisterna magna CSF lactate concentrations 10 to 30 minutes into recovery distinguished those animals that remained brain-intact (less than 13 mM) from those that developed brain damage (greater than 15 mM) with 100% accuracy. Seven cats developed delayed cardiogenic shock 3 to 12 hours into the recovery period. This outcome was predicted by blood pH values less than 6.70 shortly after resuscitation while all 27 surviving cats exhibited values greater than 6.80.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3