Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles.

Author:

Rosenblum W I

Abstract

The endothelium of mouse pial arterioles was injured in situ with a light/dye technique. The response of the arterioles to acetylcholine or to bradykinin was compared before and after the injury. All vessels failed to dilate after injury. In fact the predominant response now became constriction. The injured vessels were still capable of dilating to papaverine. Uninjured vessels continued to dilate to acetylcholine or bradykinin. The data show that relaxation of pial arterioles to acetylcholine or bradykinin is dependent on a normal endothelium. This is in keeping with demonstrations by others that an endothelial dependent relaxing factor or factors is(are) the mediator of the dilation to either acetylcholine or bradykinin. The present demonstration of such endothelial dependence is important because in contrast with the bulk of the literature it deals with in vivo, rather than in vitro data, and with microcirculation rather than large vessels. It is also important because it concerns brain circulation. The data suggests that endothelial injury, known to occur in a wide variety of pathologic states, could enhance vasospastic potential by eliminating dilating influences and/or converting them to constricting forces.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference21 articles.

1. Endothelial Cells as Mediators of Vasodilation of Arteries

2. Role of endothelium in responses of vascular smooth muscle.

3. Effects of acetylcholine on the coronary artery;Vanhoutte PM;Fed Proc,1984

4. Endothelial dependent relaxation of rabbit aorta;Singer HA;J Pharmacol Exp Therap,1983

5. The nature of endothelium-derived vascular relaxant factor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3