Hypoxia induced preferential ketone utilization by rat brain slices.

Author:

Kirsch J R,D'Alecy L G

Abstract

When exposed to hypoxia, intact mice, with elevated blood ketones, live longer than mice with normal blood ketones. To evaluate a possible mechanism responsible for this phenomenon a rat brain slice preparation was used to determine if brain tissue would utilize glucose or ketones preferentially during exposure to reduced oxygen. Reducing available oxygen in the incubation medium from 95%, in steps, to 5% produced the expected gradual reduction in the carbon dioxide formation from glucose. In contrast, reducing the oxygen level to 40 and 20% resulted in a statistically significant stimulation of the production of carbon dioxide from the ketone beta-hydroxybutyrate. At very low oxygen levels carbon dioxide production from either substrate was reduced. These results are consistent with the hypothesis that ketones can be used in addition to glucose as a substrate for brain energy production even during reduced oxygen availability. If the increase in carbon dioxide production from ketones can be equated with an increase in energy production from this supplemental substrate then ketones may be therapeutically useful in avoiding the collapse of brain function during moderate hypoxia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3