Evolving focal cerebral ischemia in cats: spatial correlation of nuclear magnetic resonance imaging, cerebral blood flow, tetrazolium staining, and histopathology.

Author:

Bose B1,Jones S C1,Lorig R1,Friel H T1,Weinstein M1,Little J R1

Affiliation:

1. Department of Neurological Surgery, Cleveland Clinic Foundation, OH 44106-4775.

Abstract

The spatial correlation of nuclear magnetic resonance imaging (NMRI) and cerebral blood flow (CBF) may improve our ability to identify ischemic brain lesions and may provide further insight into the pathophysiology of early cerebral ischemia. Eleven pentobarbital-anesthetized adult cats underwent exposure of the common carotid arteries bilaterally and the right middle cerebral artery through a transorbital approach. Baseline NMRI images were obtained with a single spin-echo, multislice technique using a 0.6-T field, 0.4-cm slice thickness, and a surface coil. Focal ischemia was produced with right middle cerebral artery occlusion and potentiated with bilateral common carotid artery ligation. Sequential NMRI studies were then performed at 1, 2, 4, 6, and 12 hours or until CBF was determined in the same cats using [14C]iodoantipyrine at either 2 (n = 2), 4 (n = 2), 6 (n = 2), or 12 (n = 1) hours after the time of occlusion. This protocol allowed temporal and spatial correlation of NMRI and CBF. Alternate 5-mm brain slices were incubated with 1% 2,3,5-triphenyltetrazolium chloride (TTC) for 45 minutes at 37-41 degrees C and frozen in liquid Freon for later autoradiographic CBF determination. Four cats were studied only with NMRI and TTC (not CBF). The correlation between areas of increased NMRI signal intensity observed in T2-weighted images (repetition time 2,000 msec, echo time 120 msec), vital staining with TTC, low CBF, and routine histology was evaluated. During the early phase (less than 6 hours), T2-weighted NMRI changes were localized to the central ischemic gray matter areas, as defined in the later CBF images, with no involvement of the white matter. By the twelfth hour the NMRI changes involved the entire ischemic area including gray and white matter. The initial visible changes seen on T2-weighted NMRI are suggestive of cellular edema, and the later changes are characteristic of vasogenic edema. The spread of NMRI changes compared with the ischemic area determined from autoradiographic CBF is consistent with the previously described biphasic evolution of ischemic injury. These data suggest that T2-weighted NMRI could be used clinically to delineate areas of acute ischemic stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference41 articles.

1. MR imaging of acute experimental ischemia in cats;Brant-Zawadzki M;AJNR,1986

2. Nuclear magnetic resonance evaluation of stroke. A preliminary report.

3. Nuclear magnetic resonance imaging in central nervous system disease

4. NMR imaging in neurological disease;Bydder GM;Prog Nucl Med,1984

5. Clinical efficiency of nuclear magnetic resonance imaging.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3