Prevention of delayed neuronal death in gerbil hippocampus by ion channel blockers.

Author:

Izumiyama K1,Kogure K1

Affiliation:

1. Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.

Abstract

We used a gerbil model of cerebral ischemia to study the effects of ion channel blockers on neuronal death resulting from enhanced glutamate release and calcium ion influx. The common carotid arteries of gerbils were occluded for 5 minutes and injected intraperitoneally immediately after ischemia with an alkylene iminopropylene derivative (glutamate blocker) or a piperazinyl ethanol derivative (calcium blocker) given at high or low doses. Two vehicle groups received saline or 0.2% methyl cellulose solution. Seven days later, the gerbils were perfusion-fixed and their brains were processed for histologic study. The number of neurons per millimeter (neuronal density) of the CA1 region was calculated, and the neuronal density in each group was statistically compared using the Mann-Whitney U test. Compared with a control group not subjected to carotid ligation, neurons of the two vehicle groups and the low-dose calcium blocker group were almost nonexistent in the CA1 region. Neuronal densities of the glutamate blocker group and the high-dose calcium blocker group were similar and were found to be within normal limits by statistical analysis. Our study shows that detrimental membrane phenomena and the incidence of delayed neuronal death may be counteracted by the systemic administration of these ion channel blockers after ischemic insult.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference29 articles.

1. Delayed neuronal death in the gerbil hippocampus following ischemia

2. Temporal profile of neuronal damage in a model of transient forebrain ischemia

3. Brierley JB Graham Dl: Hypoxia and vascular disorders of the central nervous system in Hume Adams J Corsellis JAN Duchen LW (eds): Greenfield's Neuropathology ed 4. London Edward Arnold 1984 pp 125-207

4. Catecholamines in Experimental Brain Ischemia

5. Brain H3-catecholamine metabolism in experimental cerebral ischemia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3