Atrial Natriuretic Peptide Locally Counteracts the Deleterious Effects of Cardiomyocyte Mineralocorticoid Receptor Activation

Author:

Nakagawa Hitoshi1,Oberwinkler Heike1,Nikolaev Viacheslav O.1,Gaßner Birgit1,Umbenhauer Sandra1,Wagner Helga1,Saito Yoshihiko1,Baba Hideo A.1,Frantz Stefan1,Kuhn Michaela1

Affiliation:

1. From the Institute of Physiology (H.N., H.O., B.G., M.K.) and Comprehensive Heart Failure Center (H.N., S.F., M.K.), University Würzburg, Würzburg, Germany; Emmy Noether Group of the Deutsche Forschungsgemeinschaft, Department of Cardiology and Pneumology, University Göttingen, Göttingen, Germany (V.O.N.); Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (S.U., H.W, S.F.); First Department of Internal Medicine, Nara Medical University, Kashihara, Japan (Y.S.); and...

Abstract

Background— The endocrine balance between atrial natriuretic peptide (ANP) and the renin–angiotensin–aldosterone system is critical for the maintenance of arterial blood pressure and volume homeostasis. This study investigated whether a cardiac imbalance between ANP and aldosterone, toward increased mineralocorticoid receptor (MR) signaling, contributes to adverse left ventricular remodeling in response to pressure overload. Methods and Results— We used the MR-selective antagonist eplerenone to test the role of MRs in mediating pressure overload–induced dilatative cardiomyopathy of mice with abolished local, cardiac ANP activity. In response to 21 days of transverse aortic constriction, mice with cardiomyocyte-restricted inactivation (knockout) of the ANP receptor (guanylyl cyclase [GC]-A) or the downstream cGMP-dependent protein kinase I developed enhanced left ventricular hypertrophy and fibrosis together with contractile dysfunction. Treatment with eplerenone (100 mg/kg/d) attenuated left ventricular hypertrophy and fully prevented fibrosis, dilatation, and failure. Transverse aortic constriction induced the cardiac expression of profibrotic connective tissue growth factor and attenuated the expression of SERCA2a (sarcoplasmic reticulum Ca 2+ -ATPase) in knockout mice, but not in controls. These genotype-dependent molecular changes were similarly prevented by eplerenone. ANP attenuated the aldosterone-induced nuclear translocation of MRs via GC-A/cGMP-dependent protein kinase I in transfected HEK 293 (human embryonic kidney) cells. Coimmunoprecipitation and fluorescence resonance energy transfer experiments demonstrated that a population of MRs were membrane associated in close interaction with GC-A and cGMP-dependent protein kinase I and, moreover, that aldosterone caused a conformational change of this membrane MR/GC-A protein complex which was prevented by ANP. Conclusions— ANP counter-regulates cardiac MR activation in hypertensive heart disease. An imbalance in cardiac ANP/GC-A (inhibition) and aldosterone/MR signaling (augmentation) favors adverse cardiac remodeling in chronic pressure overload.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3