Glucose 6-Phosphate Dehydrogenase Deficiency Increases Redox Stress and Moderately Accelerates the Development of Heart Failure

Author:

Hecker Peter A.1,Lionetti Vincenzo1,Ribeiro Rogerio F.1,Rastogi Sharad1,Brown Bethany H.1,O’Connell Kelly A.1,Cox James W.1,Shekar Kadambari C.1,Gamble Dionna M.1,Sabbah Hani N.1,Leopold Jane A.1,Gupte Sachin A.1,Recchia Fabio A.1,Stanley William C.1

Affiliation:

1. From the Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD (P.A.H., R.F.R., B.H.B., K.A.O., J.W.C., K.C.S., D.M.G., W.C.S.); Gruppo Intini-SMA Laboratory of Experimental Cardiology, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy (V.L., F.A.R.); Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI (S.R., H.N.S.); Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital,...

Abstract

Background— Glucose 6-phosphate dehydrogenase (G6PD) is the most common deficient enzyme in the world. In failing hearts, G6PD is upregulated and generates reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is used by the glutathione pathway to remove reactive oxygen species but also as a substrate by reactive oxygen species-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and reactive oxygen species production. Methods and Results— This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ≈40% normal activity). Myocardial infarction with 3 months follow-up resulted in left ventricular dilation and dysfunction in both wild-type and G6PDX mice but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater left ventricular dilation in G6PDX mice than wild-type mice. We further stressed transverse aortic constriction mice by feeding a high fructose diet to increase flux through G6PD and reactive oxygen species production and again observed worse left ventricular remodeling and a lower ejection fraction in G6PDX than wild-type mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with transverse aortic constriction, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. Conclusions— Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of left ventricular remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher but limited by compensatory mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3