Sphingosine-1-Phosphate Receptor Modulator, FTY720, Improves Diastolic Dysfunction and Partially Reverses Atrial Remodeling in a Tm-E180G Mouse Model Linked to Hypertrophic Cardiomyopathy

Author:

Ryba David M.1,Warren Chad M.1,Karam Chehade N.1,Davis Robert T.1,Chowdhury Shamim A.K.1,Alvarez Manuel G.1,McCann Maximilian1,Liew Chong Wee1,Wieczorek David F.2,Varga Peter3,Solaro R. John1,Wolska Beata M.14

Affiliation:

1. Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.).

2. Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, OH (D.F.W.).

3. Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago (P.V.).

4. Department of Medicine, Division of Cardiology, University of Illinois at Chicago, IL (B.M.W.).

Abstract

Background: Hypertrophic cardiomyopathy (HCM) is a genetic cardiovascular disorder, primarily involving mutations in sarcomeric proteins. HCM patients present with hypertrophy, diastolic dysfunction, and fibrosis, but there is no specific treatment. The sphingosine-1-phosphate receptor modulator, FTY720/fingolimod, is approved for treatment of multiple sclerosis. We hypothesize that modulation of the sphingosine-1-phosphate receptor by FTY720 would be of therapeutic benefit in sarcomere-linked HCM. Methods: We treated mice with an HCM-linked mutation in tropomyosin (Tm-E180G) and nontransgenic littermates with FTY720 or vehicle for 6 weeks. Compared with vehicle-treated, FTY720-treated Tm-E180G mice had a significant reduction in left atrial size (1.99±0.19 [n=7] versus 2.70±0.44 [n=6] mm; P <0.001) and improvement in diastolic function (E/A ratio: 2.69±0.38 [n=7] versus 5.34±1.19 [n=6]; P =0.004) as assessed by echocardiography. Results: Pressure-volume relations revealed significant improvements in the end-diastolic pressure volume relationship, relaxation kinetics, preload recruitable stroke work, and ejection fraction. Detergent-extracted fiber bundles revealed a significant decrease in myofilament Ca 2+ -responsiveness (pCa 50 =6.15±0.11 [n=13] versus 6.24±0.06 [n=14]; P =0.041). We attributed these improvements to a downregulation of S-glutathionylation of cardiac myosin binding protein-C in FTY720-treated Tm-E180G mice and reduction in oxidative stress by downregulation of NADPH oxidases with no changes in fibrosis. Conclusions: This is the first demonstration that modulation of S1PR results in decreased myofilament-Ca 2+ -responsiveness and improved diastolic function in HCM. We associated these changes with decreased oxidative modification of myofilament proteins via downregulation of NOX2. Our data support the hypothesis that modification of sphingolipid signaling may be a novel therapeutic approach in HCM.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3