Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C During Increased Pacing Frequency or β 1 -Adrenergic Stimulation

Author:

Tong Carl W.1,Wu Xin1,Liu Yang1,Rosas Paola C.1,Sadayappan Sakthivel1,Hudmon Andy1,Muthuchamy Mariappan1,Powers Patricia A.1,Valdivia Héctor H.1,Moss Richard L.1

Affiliation:

1. From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of...

Abstract

Background— Mammalian hearts exhibit positive inotropic responses to β-adrenergic stimulation as a consequence of protein kinase A–mediated phosphorylation or as a result of increased beat frequency (the Bowditch effect). Several membrane and myofibrillar proteins are phosphorylated under these conditions, but the relative contributions of these to increased contractility are not known. Phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) by protein kinase A accelerates the kinetics of force development in permeabilized heart muscle, but its role in vivo is unknown. Such understanding is important because adrenergic responsiveness of the heart and the Bowditch effect are both depressed in heart failure. Methods and Results— The roles of cMyBP-C phosphorylation were studied using mice in which either WT or nonphosphorylatable forms of cMyBP-C [ser273ala, ser282ala, ser302ala: cMyBP-C(t3SA)] were expressed at similar levels on a cMyBP-C null background. Force and [Ca 2+ ] in measurements in isolated papillary muscles showed that the increased force and twitch kinetics because increased pacing or β 1 -adrenergic stimulation were nearly absent in cMyBP-C(t3SA) myocardium, even though [Ca 2+ ] in transients under each condition were similar to WT. Biochemical measurements confirmed that protein kinase A phosphorylated ser273, ser282, and ser302 in WT cMyBP-C. In contrast, CaMKIIδ, which is activated by increased pacing, phosphorylated ser302 principally, ser282 to a lesser degree, and ser273 not at all. Conclusions— Phosphorylation of cMyBP-C increases the force and kinetics of twitches in living cardiac muscle. Further, cMyBP-C is a principal mediator of increased contractility observed with β-adrenergic stimulation or increased pacing because of protein kinase A and CaMKIIδ phosphorylations of cMyB-C.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3