Molecular Screen Identifies Cardiac Myosin–Binding Protein-C as a Protein Kinase G-Iα Substrate

Author:

Thoonen Robrecht1,Giovanni Shewit1,Govindan Suresh1,Lee Dong I.1,Wang Guang-Rong1,Calamaras Timothy D.1,Takimoto Eiki1,Kass David A.1,Sadayappan Sakthivel1,Blanton Robert M.1

Affiliation:

1. From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E...

Abstract

Background— Pharmacological activation of cGMP-dependent protein kinase G I (PKGI) has emerged as a therapeutic strategy for humans with heart failure. However, PKG-activating drugs have been limited by hypotension arising from PKG-induced vasodilation. PKGIα antiremodeling substrates specific to the myocardium might provide targets to circumvent this limitation, but currently remain poorly understood. Methods and Results— We performed a screen for myocardial proteins interacting with the PKGIα leucine zipper (LZ)–binding domain to identify myocardial-specific PKGI antiremodeling substrates. Our screen identified cardiac myosin–binding protein-C (cMyBP-C), a cardiac myocyte–specific protein, which has been demonstrated to inhibit cardiac remodeling in the phosphorylated state, and when mutated leads to hypertrophic cardiomyopathy in humans. GST pulldowns and precipitations with cGMP-conjugated beads confirmed the PKGIα–cMyBP-C interaction in myocardial lysates. In vitro studies demonstrated that purified PKGIα phosphorylates the cMyBP-C M-domain at Ser-273, Ser-282, and Ser-302. cGMP induced cMyBP-C phosphorylation at these residues in COS cells transfected with PKGIα, but not in cells transfected with LZ mutant PKGIα, containing mutations to disrupt LZ substrate binding. In mice subjected to left ventricular pressure overload, PKGI activation with sildenafil increased cMyBP-C phosphorylation at Ser-273 compared with untreated mice. cGMP also induced cMyBP-C phosphorylation in isolated cardiac myocytes. Conclusions— Taken together, these data support that PKGIα and cMyBP-C interact in the heart and that cMyBP-C is an anti remodeling PKGIα kinase substrate. This study provides the first identification of a myocardial-specific PKGIα LZ-dependent antiremodeling substrate and supports further exploration of PKGIα myocardial LZ substrates as potential therapeutic targets for heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3