Distinct Endothelial Cell Responses in the Heart and Kidney Microvasculature Characterize the Progression of Heart Failure With Preserved Ejection Fraction in the Obese ZSF1 Rat With Cardiorenal Metabolic Syndrome

Author:

van Dijk Christian G.M.1,Oosterhuis Nynke R.1,Xu Yan Juan1,Brandt Maarten1,Paulus Walter J.1,van Heerebeek Loek1,Duncker Dirk J.1,Verhaar Marianne C.1,Fontoura Dulce1,Lourenço André P.1,Leite-Moreira Adelino F.1,Falcão-Pires Inês1,Joles Jaap A.1,Cheng Caroline1

Affiliation:

1. From the Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands (C.G.M.v.D., N.R.O., Y.J.X., M.C.V., J.A.J., C.C.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (W.J.P., L.v.H.); Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands (M.B., D.J.D., C.C.);...

Abstract

Background— The combination of cardiac and renal disease driven by metabolic risk factors, referred to as cardiorenal metabolic syndrome (CRMS), is increasingly recognized as a critical pathological entity. The contribution of (micro)vascular injury to CRMS is considered to be substantial. However, mechanistic studies are hampered by lack of in vivo models that mimic the natural onset of the disease. Here, we evaluated the coronary and renal microvasculature during CRMS development in obese diabetic Zucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) rats. Methods and Results— Echocardiographic, urine, and blood evaluations were conducted in 3 groups (Wistar-Kyoto, lean ZSF1, and obese ZSF1) at 20 and 25 weeks of age. Immunohistological evaluation of renal and cardiac tissues was conducted at both time points. At 20 and 25 weeks, obese ZSF1 rats showed higher body weight, significant left ventricular hypertrophy, and impaired diastolic function compared with all other groups. Indices of systolic function did not differ between groups. Obese ZSF1 rats developed hyperproliferative vascular foci in the subendocardium, which lacked microvascular organization and were predilection sites of inflammation and fibrosis. In the kidney, obese ZSF1 animals showed regression of the peritubular and glomerular microvasculature, accompanied by tubulointerstitial damage, glomerulosclerosis, and proteinuria. Conclusions— The obese ZSF1 rat strain is a suitable in vivo model for CRMS, sharing characteristics with the human syndrome during the earliest onset of disease. In these rats, CRMS induces microvascular fibrotic responses in heart and kidneys, associated with functional impairment of both organs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3