Sympathoexcitation in Rats With Chronic Heart Failure Depends on Homeobox D10 and MicroRNA-7b Inhibiting GABBR1 Translation in Paraventricular Nucleus

Author:

Wang Renjun1,Huang Qian1,Zhou Rui1,Dong Zengxiang1,Qi Yunfeng1,Li Hua1,Wei Xiaowei1,Wu Hui1,Wang Huiping1,Wilcox Christopher S.1,Hultström Michael1,Zhou Xiaofu1,Lai En Yin1

Affiliation:

1. From the Departments of Biotechnology (R.W., H.L, H. Wu) and Bioscience (Y.Q., X.W., X.Z.), School of Life Science, Jilin Normal University, Siping, China; Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China (R.W.); Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (Q.H., R.Z., H. Wang, E.Y.L.); Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China (Z.D.);...

Abstract

Background— Chronic heart failure (CHF) increases sympathoexcitation through angiotensin II (ANG II) receptors (AT 1 R) in the paraventricular nucleus (PVN). Recent publications indicate both γ-aminobutyric acid B-type receptor 1 (GABBR1) and microRNA-7b (miR-7b) are expressed in the PVN. We hypothesized that ANG II regulates sympathoexcitation through homeobox D10 (HoxD10), which regulates miR-7b in other tissues. Methods and Results— Ligation of the left anterior descendent coronary artery in rats caused CHF and sympathoexcitation. PVN expression of AT 1 R, HoxD10, and miR-7b was increased, whereas GABBR1 was lower in CHF. Infusion of miR-7b in the PVN caused sympathoexcitation in control animals and enhanced the changes in CHF. Antisense miR-7b infused in PVN normalized GABBR1 expression while attenuating CHF symptoms, including sympathoexcitation. A luciferase reporter assay detected miR-7b binding to the 3′ untranslated region of GABBR1 that was absent after targeted mutagenesis. ANG II induced HoxD10 and miR-7b in NG108 cells, effects blocked by AT 1 R blocker losartan and by HoxD10 silencing. miR-7b transfection into NG108 cells decreased GABBR1 expression, which was inhibited by miR-7b antisense. In vivo PVN knockdown of AT 1 R attenuated the symptoms of CHF, whereas HoxD10 overexpression exaggerated them. Finally, in vivo PVN ANG II infusion caused dose-dependent sympathoexcitation that was abrogated by miR-7b antisense and exaggerated by GABBR1 silencing. Conclusions— There is an ANG II/AT 1 R/HoxD10/miR-7b/GABBR1 pathway in the PVN that contributes to sympathoexcitation and deterioration of cardiac function in CHF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3