Nexilin Is Necessary for Maintaining the Transverse-Axial Tubular System in Adult Cardiomyocytes

Author:

Spinozzi Simone1,Liu Canzhao1,Chen Ze’e1,Feng Wei1,Zhang Lunfeng12,Ouyang Kunfu3,Evans Sylvia M.12,Chen Ju1ORCID

Affiliation:

1. Department of Medicine (S.S., C.L., Z.C., W.F., L.Z., S.M.E., J.C.), University of California San Diego, La Jolla.

2. Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.Z., S.M.E.), University of California San Diego, La Jolla.

3. Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China (K.O.).

Abstract

Background: NEXN (nexilin) is a protein of the junctional membrane complex required for development of cardiac T-tubules. Global and cardiomyocyte-specific loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy and premature death. Therefore, little is known as to the role of NEXN in adult cardiomyocytes. Transverse-axial tubular system remodeling are well-known features in heart failure. Although NEXN is required during development for T-tubule formation, its role, if any, in mature T-tubules remains to be addressed. Methods: Nexn inducible adult cardiomyocyte-specific KO mice were generated. Comprehensive morphological and functional analyses were performed. Heart samples (n>3) were analyzed by molecular, biochemical, and electron microscopy analyses. Isolated single adult cardiomyocytes were analyzed by confocal microscopy, and myocyte shortening/re-lengthening and Ca 2+ transient studies were conducted. Results: Inducible cardiomyocyte-specific loss of Nexn in adult mice resulted in a dilated cardiomyopathy with reduced cardiac function (13% reduction in percentage fractional shortening; P <0.05). In vivo and in vitro analyses of adult mouse heart samples revealed that NEXN was essential for optimal contraction and calcium handling and was required for maintenance of T-tubule network organization (transverse tubular component in Nexn inducible adult cardiomyocyte-specific KO mice reduced by 40% with respect to controls, P <0.05). Conclusions: Results here reported reveal NEXN to be a pivotal component of adult junctional membrane complexes required for maintenance of transverse-axial tubular architecture. These results demonstrate that NEXN plays an essential role in the adult cardiomyocyte and give further understanding of pathological mechanisms responsible for cardiomyopathy in patients carrying mutations in the NEXN gene.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3