Mitochondrial Sirtuin-3 (SIRT3) Prevents Doxorubicin-Induced Dilated Cardiomyopathy by Modulating Protein Acetylation and Oxidative Stress

Author:

Tomczyk Mateusz M.123ORCID,Cheung Kyle G.123ORCID,Xiang Bo123ORCID,Tamanna Nahid4ORCID,Fonseca Teixeira Ana L.4ORCID,Agarwal Prasoon12356ORCID,Kereliuk Stephanie M.123ORCID,Spicer Victor738ORCID,Lin Ligen910ORCID,Treberg Jason4ORCID,Tong Qiang9ORCID,Dolinsky Vernon W.123ORCID

Affiliation:

1. Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba‚ Winnipeg‚ Canada (M.M.T., K.G.C., B.X., P.A., S.M.K., V.W.D.).

2. Department of Pharmacology and Therapeutics (M.M.T., K.G.C., B.X., P.A., S.M.K., V.W.D.), University of Manitoba, Winnipeg, Canada.

3. Rady Faculty of Health Science, College of Medicine (M.M.T., K.G.C., B.X., P.A., S.M.K., V.S., V.W.D.), University of Manitoba, Winnipeg, Canada.

4. Department of Biological Sciences (N.T., A.L.F.T., J.T.), University of Manitoba, Winnipeg, Canada.

5. KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, Stockholm, Sweden (P.A.).

6. Science for Life Laboratory, Solna, Sweden (P.A.).

7. Department of Internal Medicine (V.S.), University of Manitoba, Winnipeg, Canada.

8. Manitoba Center for Proteomics and Systems Biology, Winnipeg, Canada (V.S.).

9. Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX (L.L., Q.T.).

10. Institute of Chinese Medical Sciences, University of Macau, China (L.L.).

Abstract

Background: High doses of doxorubicin put cancer patients at risk for developing dilated cardiomyopathy. Previously, we showed that doxorubicin treatment decreases SIRT3 (sirtuin 3), the main mitochondrial deacetylase and increases protein acetylation in rat cardiomyocytes. Here, we hypothesize that SIRT3 expression can attenuate doxorubicin induced dilated cardiomyopathy in vivo by preventing the acetylation of mitochondrial proteins. Methods: Nontransgenic, M3-SIRT3 (truncated SIRT3; short isoform), and M1-SIRT3 (full-length SIRT3; mitochondrial localized) transgenic mice were treated with doxorubicin for 4 weeks (8 mg/kg body weight per week). Echocardiography was performed to assess cardiac structure and function and validated by immunohistochemistry and immunofluorescence (n=4–10). Mass spectrometry was performed on cardiac mitochondrial peptides in saline (n=6) and doxorubicin (n=5) treated hearts. Validation was performed in doxorubicin treated primary rat and human induced stem cell derived cardiomyocytes transduced with adenoviruses for M3-SIRT3 and M1-SIRT3 and deacetylase deficient mutants (n=4–10). Results: Echocardiography revealed that M3-SIRT3 transgenic mice were partially resistant to doxorubicin induced changes to cardiac structure and function whereas M1-SIRT3 expression prevented cardiac remodeling and dysfunction. In doxorubicin hearts, 37 unique acetylation sites on mitochondrial proteins were altered. Pathway analysis revealed these proteins are involved in energy production, fatty acid metabolism, and oxidative stress resistance. Increased M1-SIRT3 expression in primary rat and human cardiomyocytes attenuated doxorubicin-induced superoxide formation, whereas deacetylase deficient mutants were unable to prevent oxidative stress. Conclusions: Doxorubicin reduced SIRT3 expression and markedly affected the cardiac mitochondrial acetylome. Increased M1-SIRT3 expression in vivo prevented doxorubicin-induced cardiac dysfunction, suggesting that SIRT3 could be a potential therapeutic target for mitigating doxorubicin-induced dilated cardiomyopathy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3