Hepatic Ketogenesis Induced by Middle Cerebral Artery Occlusion in Mice

Author:

Koch Konrad1,Berressem Dirk1,Konietzka Jan1,Thinnes Anna1,Eckert Gunter P.1,Klein Jochen1

Affiliation:

1. Department of Pharmacology, FB 14, Goethe University, Frankfurt, Germany

Abstract

Background Ketone bodies are known to substitute for glucose as brain fuel when glucose availability is low. Ketogenic diets have been described as neuroprotective. Similar data have been reported for triheptanoin, a fatty oil and anaplerotic compound. In this study, we monitored the changes of energy metabolites in liver, blood, and brain after transient brain ischemia to test for ketone body formation induced by experimental stroke. Methods and Results Mice were fed a standard carbohydrate‐rich diet or 2 fat‐rich diets, 1 enriched in triheptanoin and 1 in soybean oil. Stroke was induced in mice by middle cerebral artery occlusion for 90 minutes, followed by reperfusion. Mice were sacrificed, and blood plasma and liver and brain homogenates were obtained. In 1 experiment, microdialysis was performed. Metabolites (eg glucose, β‐hydroxybutyrate, citrate, succinate) were determined by gas chromatography–mass spectrometry. After 90 minutes of brain ischemia, β‐hydroxybutyrate levels were dramatically increased in liver, blood, and brain microdialysate and brain homogenate, but only in mice fed fat‐rich diets. Glucose levels were changed in the opposite manner in blood and brain. Reperfusion decreased β‐hydroxybutyrate and increased glucose within 60 minutes. Stroke‐induced ketogenesis was blocked by propranolol, a β‐receptor antagonist. Citrate and succinate were moderately increased by fat‐rich diets and unchanged after stroke. Conclusions We conclude that brain ischemia induces the formation of β‐hydroxybutyrate (ketogenesis) in the liver and the consumption of β‐hydroxybutyrate in the brain. This effect seems to be mediated by β‐adrenergic receptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3