Inhibition of 5‐Hydroxytryptamine Receptor 2B Reduced Vascular Restenosis and Mitigated the β‐Arrestin2–Mammalian Target of Rapamycin/p70S6K Pathway

Author:

Liu Yahan1,Wang Zhipeng1,Li Jing1,Ban Yiqian1,Mao Guangmei1,Zhang Man1,Wang Mo1,Liu Yan1,Zhao Beilei1,Shen Qiang1,Xu Qingbo2,Wang Nanping13

Affiliation:

1. Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China

2. Cardiovascular Division, King's College London King's British Heart Foundation (BHF) Centre, London, United Kingdom

3. Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China

Abstract

Background As a monoamine neurotransmitter, 5‐hydroxytryptamine (5‐HT) or serotonin modulates mood, appetite, and sleep. Besides, 5‐HT also has important peripheral functions. 5‐HT receptor 2B (5‐HT2BR) plays a key role in cardiovascular diseases, such as pulmonary arterial hypertension and cardiac valve disease. Percutaneous intervention has been used to restore blood flow in occlusive vascular disease. However, restenosis remains a significant problem. Herein, we investigated the role of 5‐HT2BR in neointimal hyperplasia, a key pathological process in restenosis. Methods and Results The expression of 5‐HT2BR was upregulated in wire‐injured mouse femoral arteries. In addition, BW723C86, a selective 5‐HT2BR agonist, promoted the injury response during restenosis. 5‐HT and BW723C86 stimulated migration and proliferation of rat aortic smooth muscle cells. Conversely, LY272015, a selective antagonist, attenuated the 5‐HT–induced smooth muscle cell migration and proliferation. In vitro study showed that the promigratory effects of 5‐HT2BR were mediated through the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling in a β‐arrestin2–dependent manner. Inhibition of mammalian target of rapamycin or p70S6K mitigated 5‐HT2BR–mediated smooth muscle cell migration. Mice with deficiency of 5‐HT2BR showed significantly reduced neointimal formation in wire‐injured arteries. Conclusions These results demonstrated that activation of 5‐HT2BR and β‐arrestin2–biased downstream signaling are key pathological processes in neointimal formation, and 5‐HT2BR may be a potential target for the therapeutic intervention of vascular restenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3