Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrin‐Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia

Author:

Liu Bin12,Walton Shane D.1,Ho Hsiang‐Ting1,Belevych Andriy E.1,Tikunova Svetlana B.1,Bonilla Ingrid1,Shettigar Vikram1,Knollmann Bjorn C.3,Priori Silvia G.4,Volpe Pompeo5,Radwański Przemysław B.1,Davis Jonathan P.1,Györke Sándor1

Affiliation:

1. Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH

2. Department of Biological Sciences, Mississippi State University, Starkville, MI

3. Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Vanderbilt, TN

4. Division of Cardiology and Molecular Cardiology, Maugeri Foundation–University of Pavia, Italy

5. Department of Biomedical Sciences, University of Padova, Italy

Abstract

Background Catecholaminergic polymorphic ventricular tachycardia ( CPVT ) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin ( CASQ 2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral‐mediated delivery to alleviate arrhythmias in non–CaM‐related CPVT . Methods and Results To that end, we have designed a CaM protein ( GSH ‐M37Q; dubbed as therapeutic CaM or T‐CaM) that exhibited a slowed N‐terminal Ca dissociation rate and prolonged RyR2 refractoriness in permeabilized myocytes derived from CPVT mice carrying the CASQ 2 mutation R33Q. This T‐CaM was introduced to the heart of R33Q mice through recombinant adeno‐associated viral vector serotype 9. Eight weeks postinfection, we performed confocal microscopy to assess Ca handling and recorded surface ECGs to assess susceptibility to arrhythmias in vivo. During catecholamine stimulation with isoproterenol, T‐CaM reduced isoproterenol‐promoted diastolic Ca waves in isolated CPVT cardiomyocytes. Importantly, T‐CaM exposure abolished ventricular tachycardia in CPVT mice challenged with catecholamines. Conclusions Our results suggest that gene transfer of T‐CaM by adeno‐associated viral vector serotype 9 improves myocyte Ca handling and alleviates arrhythmias in a calsequestrin‐associated CPVT model, thus supporting the potential of a CaM‐based antiarrhythmic approach as a therapeutic avenue for genetically distinct forms of CPVT .

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3