Gene Transfer of Endothelial NO Synthase and Manganese Superoxide Dismutase on Arterial Vascular Cell Adhesion Molecule-1 Expression and Superoxide Production in Deoxycorticosterone Acetate-Salt Hypertension

Author:

Li Lixin1,Crockett Elahe1,Wang Donna H.1,Galligan James J.1,Fink Gregory D.1,Chen Alex F.1

Affiliation:

1. From the Departments of Pharmacology and Toxicology (L.L., J.J.G., G.D.F., A.F.C.), Surgery (E.C.), and Medicine (D.H.W.) and the Neuroscience Program (L.L., J.J.G., G.D.F., A.F.C.), Michigan State University, East Lansing.

Abstract

Enhanced vascular cell adhesion molecule-1 (VCAM-1) expression directly contributes to vascular dysfunction in hypertension. Decreased NO and/or increased superoxide are causative factors for such an event in the vessel wall. The present study was undertaken to determine whether gene transfer of endothelial NO synthase (eNOS) or manganese superoxide dismutase (MnSOD) affects VCAM-1 levels in arteries from hypertensive rats. Isolated carotid and femoral arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats were transduced for 4 hours with adenoviral vectors encoding eNOS, MnSOD, or β-galactosidase reporter genes. Recombinant eNOS or MnSOD expression was evident morphologically and quantitatively 24 hours after gene transfer. Immunohistochemistry, ELISA, and Western blot techniques were used to determine VCAM-1 expression and levels. In addition, endogenous eNOS and MnSOD and in situ superoxide levels were analyzed by immunoblotting and fluorescence confocal microscopy, respectively. Arterial VCAM-1 expression was significantly higher in DOCA-salt hypertensive rats than in sham-operated rats; this expression was accompanied by decreased MnSOD but unaltered endogenous eNOS levels. VCAM-1 expression was significantly lower in MnSOD- and eNOS-transduced hypertensive arteries, with a concomitant reduction of superoxide level. These results suggest that gene transfer of MnSOD or eNOS suppresses arterial VCAM-1 expression in DOCA-salt hypertension by reducing the superoxide level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3