Sympathoexcitation by Oxidative Stress in the Brain Mediates Arterial Pressure Elevation in Obesity-Induced Hypertension

Author:

Nagae Ai1,Fujita Megumi1,Kawarazaki Hiroo1,Matsui Hiromitsu1,Ando Katsuyuki1,Fujita Toshiro1

Affiliation:

1. From the Department of Nephrology and Endocrinology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.

Abstract

Background— Obesity is one of the major risk factors for cardiovascular disease and is often associated with increased oxidative stress and sympathoexcitation. We have already suggested that increased oxidative stress in the brain modulates the sympathetic regulation of arterial pressure in salt-sensitive hypertension, which is often associated with obesity. The present study was performed to determine whether oxidative stress could mediate central sympathoexcitation in the initial stage of obesity-induced hypertension. Methods and Results— Four-week-old male Sprague-Dawley rats were fed a high-fat (45% kcal as fat) or low-fat (10% kcal as fat) diet for 6 weeks. Fat loading elicited hypertension and sympathoexcitation, along with visceral obesity. In urethane-anesthetized and artificially ventilated rats, arterial pressure and renal sympathetic nerve activity decreased in a dose-dependent fashion when 53 or 105 μmol/kg tempol, a membrane-permeable superoxide dismutase mimetic, was infused into the lateral cerebral ventricle. Central tempol reduced arterial pressure and renal sympathetic nerve activity to a significantly greater extent in high-fat diet–fed hypertensive rats than in low-fat diet–fed normotensive rats. Intracerebroventricular apocynin or diphenyleneiodonium, a reduced NADPH oxidase inhibitor, also elicited markedly greater reductions in arterial pressure and renal sympathetic nerve activity in the high-fat diet–fed rats. In addition, fat loading increased NADPH oxidase activity and NADPH oxidase subunit p22 phox , p47 phox , and gp91 phox mRNA expression in the hypothalamus. Conclusions— In obesity-induced hypertension, increased oxidative stress in the brain, possibly via activation of NADPH oxidase, may contribute to the progression of hypertension through central sympathoexcitation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3