Paraoxonase-2 Reduces Oxidative Stress in Vascular Cells and Decreases Endoplasmic Reticulum Stress–Induced Caspase Activation

Author:

Horke Sven1,Witte Ines1,Wilgenbus Petra1,Krüger Maximilian1,Strand Dennis1,Förstermann Ulrich1

Affiliation:

1. From the Department of Pharmacology (S.H., I.W., P.W., M.K., U.F.) and First Department of Internal Medicine (D.S.), Johannes Gutenberg University, Mainz, Germany.

Abstract

Background— In the vascular system, elevated levels of reactive oxygen species (ROS) produce oxidative stress and predispose to the development of atherosclerosis. Therefore, it is important to understand the systems producing and those scavenging vascular ROS. Here, we analyzed the ROS-reducing capability of paraoxonase-2 (PON2) in different vascular cells and its involvement in the endoplasmic reticulum stress pathway known as the unfolded protein response. Methods and Results— Quantitative real-time polymerase chain reaction and Western blotting revealed that PON2 is equally expressed in vascular cells and appears in 2 distinct glycosylated isoforms. By determining intracellular ROS, we show that overexpression of PON2 markedly reduced ROS, whereas its knockdown increased ROS levels significantly. Using microscopic and biochemical methods, we found PON2 mainly in the nuclear membrane and endoplasmic reticulum. Furthermore, PON2 expression was induced at both the promoter and protein levels by endoplasmic reticulum stress pathway unfolded protein response. This pathway may promote both apoptotic and survival mechanisms. Functionally, PON2 reduced unfolded protein response–accompanying oxidative stress and unfolded protein response–derived caspase activation. Conclusion— We suggest that PON2 represents an endogenous defense mechanism against vascular oxidative stress and unfolded protein response–induced cell death, thereby contributing to the prevention of atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3