Role of Extracellular RNA in Atherosclerotic Plaque Formation in Mice

Author:

Simsekyilmaz Sakine1,Cabrera-Fuentes Hector A.1,Meiler Svenja1,Kostin Sawa1,Baumer Yvonne1,Liehn Elisa A.1,Weber Christian1,Boisvert William A.1,Preissner Klaus T.1,Zernecke Alma1

Affiliation:

1. From the Institute for Molecular Cardiovascular Research, RWTH University Hospital Aachen, Aachen, Germany (S.S., E.A.L.); Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (H.A.C.-F., K.T.P.); Department of Microbiology, Kazan Federal University, Kazan, Russian Federation (H.A.C.-F.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI (S.M., Y.B., W.A.B.); Core Lab for Molecular and Structural Biology, Max...

Abstract

Background— Atherosclerosis and vascular remodeling after injury are driven by inflammation and mononuclear cell infiltration. Extracellular RNA (eRNA) has recently been implicated to become enriched at sites of tissue damage and to act as a proinflammatory mediator. Here, we addressed the role of eRNA in high-fat diet–induced atherosclerosis and neointima formation after injury in atherosclerosis-prone mice. Methods and Results— The presence of eRNA was revealed in atherosclerotic lesions from high-fat diet–fed low-density lipoprotein receptor–deficient ( Ldlr −/− ) mice in a time-progressive fashion. RNase activity in plasma increased within the first 2 weeks (44±9 versus 70±7 mU/mg protein; P =0.0012), followed by a decrease to levels below baseline after 4 weeks of high-fat diet (44±9 versus 12±2 mU/mg protein; P <0.0001). Exposure of bone marrow–derived macrophages to eRNA resulted in a concentration-dependent upregulation of the proinflammatory mediators tumor necrosis factor-α, arginase-2, interleukin-1β, interleukin-6, and interferon-γ. In a model of accelerated atherosclerosis after arterial injury in apolipoprotein E–deficient ( ApoE −/− ) mice, treatment with RNase1 diminished the increased plasma level of eRNA evidenced after injury. Likewise, RNase1 administration reduced neointima formation in comparison with vehicle-treated ApoE −/− controls (25.0±6.2 versus 46.9±6.9×10 3 μm 2 , P =0.0339) and was associated with a significant decrease in plaque macrophage content. Functionally, RNase1 treatment impaired monocyte arrest on activated smooth muscle cells under flow conditions in vitro and inhibited leukocyte recruitment to injured carotid arteries in vivo. Conclusions— Because eRNA is associated with atherosclerotic lesions and contributes to inflammation-dependent plaque progression in atherosclerosis-prone mice, its targeting with RNase1 may serve as a new treatment option against atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3