Placental Growth Factor Regulates Cardiac Inflammation Through the Tissue Inhibitor of Metalloproteinases-3/Tumor Necrosis Factor-α–Converting Enzyme Axis

Author:

Carnevale Daniela1,Cifelli Giuseppe1,Mascio Giada1,Madonna Michele1,Sbroggiò Mauro1,Perrino Cinzia1,Persico Maria Grazia1,Frati Giacomo1,Lembo Giuseppe1

Affiliation:

1. From the Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli (D.C., G.C., G.M., M.M., C.P., G.F., G.L.); Department of Genetics, Biology and Biochemistry, Turin University, Molecular Biotechnology Center, Turin (M.S.); Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche, Naples (M.G.P.); Department of Biotechnology and Medical-Surgical Sciences, Latina (G.F.), and Department of Molecular Medicine, “Sapienza” University, Rome (G.L.), Italy.

Abstract

Background— Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. Methods and Results— After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-α–converting enzyme. Interestingly, after transverse aortic constriction, placental growth factor knockout mice had strongly increased levels of tissue inhibitor of metalloproteinases-3, the main natural TACE inhibitor, thus indicating an unbalance of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-α–converting enzyme axis. Strikingly, when we used an in vivo RNA interference approach to reduce tissue inhibitor of metalloproteinases-3 levels in placental growth factor knockout mice during transverse aortic constriction, we obtained a complete phenotype rescue of early dilated cardiomyopathy. Conclusions— Our results demonstrate that placental growth factor finely tunes a balanced regulation of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-α–converting enzyme axis and the consequent TNF-α activation in response to transverse aortic constriction, thus allowing the establishment of an inflammatory response necessary for adaptive cardiac remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3