Human Semilunar Cardiac Valve Remodeling by Activated Cells From Fetus to Adult

Author:

Aikawa Elena1,Whittaker Peter1,Farber Mark1,Mendelson Karen1,Padera Robert F.1,Aikawa Masanori1,Schoen Frederick J.1

Affiliation:

1. From the Department of Pathology (E.A., M.F., K.M., R.F.P., F.J.S.) and Cardiovascular Division, Department of Medicine (M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Departments of Emergency Medicine and Anesthesiology (P.W.), University of Massachusetts Medical School, Worcester, Mass; and Center for Molecular Imaging Research (E.A.), Massachusetts General Hospital, Boston, Mass.

Abstract

Background— The evolution of cell phenotypes and matrix architecture in cardiac valves during fetal maturation and postnatal adaptation through senescence remains unexplored. Methods and Results— We hypothesized that valvular interstitial (VIC) and endothelial cell (VEC) phenotypes, critical for maintaining valve function, change throughout life in response to environmental stimuli. We performed quantitative histological assessment of 91 human semilunar valves obtained from fetuses at 14 to 19 and 20 to 39 weeks’ gestation; neonates minutes to 30 days old; children aged 2 to 16 years; and adults. A trilaminar architecture appeared by 36 weeks of gestation but remained rudimentary compared with that of adult valves. VECs expressed an activated phenotype throughout fetal development. VIC density, proliferation, and apoptosis were significantly higher in fetal than adult valves. Pulmonary and aortic fetal VICs showed an activated myofibroblast-like phenotype (α-actin expression), abundant embryonic myosin, and matrix metalloproteinase-collagenases, which indicates an immature/activated phenotype engaged in matrix remodeling versus a quiescent fibroblast-like phenotype in adults. At birth, the abrupt change from fetal to neonatal circulation was associated with a greater number of α-actin–positive VICs in neonatal aortic versus pulmonary valves. Collagen content increased from early to late fetal stages but was subsequently unchanged, whereas elastin significantly increased postnatally. Collagen fiber color analysis revealed a progressive temporal decrease in thin fibers and a corresponding increase in thick fibers. Additionally, collagen fibers were more aligned in adult than fetal valves. Conclusions— Fetal valves possess a dynamic/adaptive structure and contain cells with an activated/immature phenotype. During postnatal life, activated cells gradually become quiescent, whereas collagen matures, which suggests a progressive, environmentally mediated adaptation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 350 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3