Oxidative Stress Activates Endothelial Innate Immunity via Sterol Regulatory Element Binding Protein 2 (SREBP2) Transactivation of MicroRNA-92a

Author:

Chen Zhen1,Wen Liang1,Martin Marcy1,Hsu Chien-Yi1,Fang Longhou1,Lin Feng-Mao1,Lin Ting-Yang1,Geary McKenna J.1,Geary Greg G.1,Zhao Yongli1,Johnson David A.1,Chen Jaw-Wen1,Lin Shing-Jong1,Chien Shu1,Huang Hsien-Da1,Miller Yury I.1,Huang Po-Hsun1,Shyy John Y-J.1

Affiliation:

1. From Department of Medicine, School of Medicine (Z.C., L.W., M.M., L.F., T.-Y.L., M.J.C., Y.I.M., J.Y.-J.S.) and Department of Bioengineering (S.C.), University of California, San Diego; Department of Cardiovascular Sciences, Houston Methodist Medical Institute, Houston (L.F.); Biochemistry and Molecular Biology Graduate Program (M.M.) and Division of Biomedical Sciences, School of Medicine (D.A.J.), University of California, Riverside; Division of Cardiology, Department of Medicine, Taipei Veterans...

Abstract

Background— Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase–derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element–binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Methods and Results— Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II–infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell–specific SREBP2 transgenic mice, locked nucleic acid–modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II–induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell–dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Conclusions— Our findings suggest that SREBP2–miR-92a–inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3