Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury

Author:

Barallobre-Barreiro Javier1,Didangelos Athanasios1,Schoendube Friedrich A.1,Drozdov Ignat1,Yin Xiaoke1,Fernández-Caggiano Mariana1,Willeit Peter1,Puntmann Valentina O.1,Aldama-López Guillermo1,Shah Ajay M.1,Doménech Nieves1,Mayr Manuel1

Affiliation:

1. From the Research Unit/INIBIC CHUAC (J.B.-B., M.F.-C., N.D.) and CHUAC Interventional Cardiology Unit (G.A.-L.), A Coruña, Spain; Cardiovascular Division, King's British Heart Foundation Centre (A.D., I.D., X.Y., V.O.P., A.M.S., M.M.) and Centre for Bioinformatics, School of Physical Sciences and Engineering (I.D.), King's College London, London, UK; Faculty of Medicine, University of Goettingen, Goettingen, Germany (F.A.S.); and Department of Public Health and Primary Care, University of Cambridge,...

Abstract

Background— After myocardial ischemia, extracellular matrix (ECM) deposition occurs at the site of the focal injury and at the border region. Methods and Results— We have applied a novel proteomic method for the analysis of ECM in cardiovascular tissues to a porcine model of ischemia/reperfusion injury. ECM proteins were sequentially extracted and identified by liquid chromatography tandem mass spectrometry. For the first time, ECM proteins such as cartilage intermediate layer protein 1, matrilin-4, extracellular adipocyte enhancer binding protein 1, collagen α-1(XIV), and several members of the small leucine-rich proteoglycan family, including asporin and prolargin, were shown to contribute to cardiac remodeling. A comparison in 2 distinct cardiac regions (the focal injury in the left ventricle and the border region close to the occluded coronary artery) revealed a discordant regulation of protein and mRNA levels; although gene expression for selected ECM proteins was similar in both regions, the corresponding protein levels were much higher in the focal lesion. Further analysis based on >100 ECM proteins delineated a signature of early- and late-stage cardiac remodeling with transforming growth factor-β1 signaling at the center of the interaction network. Finally, novel cardiac ECM proteins identified by proteomics were validated in human left ventricular tissue acquired from ischemic cardiomyopathy patients at cardiac transplantation. Conclusion— Our findings reveal a biosignature of early- and late-stage ECM remodeling after myocardial ischemia/reperfusion injury, which may have clinical utility as a prognostic marker and modifiable target for drug discovery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3