Patients With Long-QT Syndrome Caused by Impaired hERG -Encoded K v 11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated With Reactive Hypoglycemia

Author:

Hyltén-Cavallius Louise1,Iepsen Eva W.1,Wewer Albrechtsen Nicolai J.1,Svendstrup Mathilde1,Lubberding Anniek F.1,Hartmann Bolette1,Jespersen Thomas1,Linneberg Allan1,Christiansen Michael1,Vestergaard Henrik1,Pedersen Oluf1,Holst Jens J.1,Kanters Jørgen K.1,Hansen Torben1,Torekov Signe S.1

Affiliation:

1. From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte...

Abstract

Background: Loss-of-function mutations in hERG (encoding the K v 11.1 voltage-gated potassium channel) cause long-QT syndrome type 2 (LQT2) because of prolonged cardiac repolarization. However, K v 11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and the incretins glucagon-like peptide-1 (GLP-1) and GIP (glucose-dependent insulinotropic polypeptide), respectively. These hormones are crucial for glucose regulation, and long-QT syndrome may cause disturbed glucose regulation. We measured secretion of these hormones and cardiac repolarization in response to glucose ingestion in LQT2 patients with functional mutations in hERG and matched healthy participants, testing the hypothesis that LQT2 patients have increased incretin and β-cell function and decreased α-cell function, and thus lower glucose levels. Methods: Eleven patients with LQT2 and 22 sex-, age-, and body mass index–matched control participants underwent a 6-hour 75-g oral glucose tolerance test with ECG recording and blood sampling for measurements of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP. Results: In comparison with matched control participants, LQT2 patients had 56% to 78% increased serum insulin, serum C-peptide, plasma GLP-1, and plasma GIP responses ( P =0.03–0.001) and decreased plasma glucose levels after glucose ingestion ( P =0.02) with more symptoms of hypoglycemia ( P =0.04). Sixty-three percent of LQT2 patients developed hypoglycemic plasma glucose levels (<70 mg/dL) versus 36% control participants ( P =0.16), and 18% patients developed serious hypoglycemia (<50 mg/dL) versus none of the controls. LQT2 patients had defective glucagon responses to low glucose, P =0.008. β-Cell function (Insulin Secretion Sensitivity Index-2) was 2-fold higher in LQT2 patients than in controls (4398 [95% confidence interval, 2259–8562] versus 2156 [1961–3201], P =0.03). Pharmacological K v 11.1 blockade (dofetilide) in rats had similar effect, and small interfering RNA inhibition of hERG in β and L cells increased insulin and GLP-1 secretion up to 50%. Glucose ingestion caused cardiac repolarization disturbances with increased QTc intervals in both patients and controls, but with a 122% greater increase in QTcF interval in LQT2 patients ( P =0.004). Conclusions: Besides a prolonged cardiac repolarization phase, LQT2 patients display increased GLP-1, GIP, and insulin secretion and defective glucagon secretion, causing decreased plasma glucose and thus increased risk of hypoglycemia. Furthermore, glucose ingestion increased QT interval and aggravated the cardiac repolarization disturbances in LQT2 patients. Clinical Trial Registration: URL: http://clinicaltrials.gov . Unique identifier: NCT02775513.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3