Beneficial Role of Erythrocyte Adenosine A2B Receptor–Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia

Author:

Liu Hong1,Zhang Yujin1,Wu Hongyu1,D’Alessandro Angelo1,Yegutkin Gennady G.1,Song Anren1,Sun Kaiqi1,Li Jessica1,Cheng Ning-Yuan1,Huang Aji1,Edward Wen Yuan1,Weng Ting Ting1,Luo Fayong1,Nemkov Travis1,Sun Hong1,Kellems Rodney E.1,Karmouty-Quintana Harry1,Hansen Kirk C.1,Zhao Bihong1,Subudhi Andrew W.1,Jameson-Van Houten Sonja1,Julian Colleen G.1,Lovering Andrew T.1,Eltzschig Holger K.1,Blackburn Michael R.1,Roach Robert C.1,Xia Yang1

Affiliation:

1. From the Department of Biochemistry and Molecular Biology (H.L., Y.Z., H.W., A.S., K.S., J.L., N.-Y.C., A.H., Y.E.W., T.T.W., F.L., R.E.K., H.K.-Q., M.R.B., Y.X.), Graduate School of Biomedical Sciences (H.L., K.S., R.E.K., M.R.B., Y.X.), and Department of Pathology (B.Z.), University of Texas Health Science Center at Houston; Departments of Otolaryngology (H.L., H.S.) and Nephrology (Y.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Biochemistry and Molecular...

Abstract

Background: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Methods: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O 2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. Results: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O 2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O 2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O 2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O 2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Conclusions: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3