Estradiol Enhances Recovery After Myocardial Infarction by Augmenting Incorporation of Bone Marrow–Derived Endothelial Progenitor Cells Into Sites of Ischemia-Induced Neovascularization via Endothelial Nitric Oxide Synthase–Mediated Activation of Matrix Metalloproteinase-9

Author:

Iwakura Atsushi1,Shastry Shubha1,Luedemann Corinne1,Hamada Hiromichi1,Kawamoto Atsuhiko1,Kishore Raj1,Zhu Yan1,Qin Gangjian1,Silver Marcy1,Thorne Tina1,Eaton Liz1,Masuda Haruchika1,Asahara Takayuki1,Losordo Douglas W.1

Affiliation:

1. From the Division of Cardiovascular Research, St. Elizabeth’s Medical Center, Tufts University School of Medicine, Boston, Mass (A.I., S.S., C.L., H.H., R.K., Y.Z., G.Q., M.S., T.T., L.E., D.W.L.); and the Division of Regenerative Medicine, Institute of Biomedical Research and Innovation, Kobe, Japan (A.K., H.M., T.A.).

Abstract

Background— Recent data have indicated that estradiol can modulate the kinetics of endothelial progenitor cells (EPCs) via endothelial nitric oxide synthase (eNOS)–dependent mechanisms. We hypothesized that estradiol could augment the incorporation of bone marrow (BM)–derived EPCs into sites of ischemia-induced neovascularization, resulting in protection from ischemic injury. Methods and Results— Myocardial infarction (MI) was induced by ligation of the left coronary artery in ovariectomized mice receiving either 17β-estradiol or placebo. Estradiol induced significant increases in circulating EPCs 2 and 3 weeks after MI in estradiol-treated animals, and capillary density was significantly greater in estradiol-treated animals. Greater numbers of BM-derived EPCs were observed at ischemic sites in estradiol-treated animals than in placebo-treated animals 1 and 4 weeks after MI. In eNOS-null mice, the effect of estradiol on mobilization of EPCs was lost, as was the functional improvement in recovery from acute myocardial ischemia. A decrease was found in matrix metalloproteinase-9 (MMP-9) expression in eNOS-null mice under basal and estradiol-stimulated conditions after MI, the mobilization of EPCs by estradiol was lost in MMP-9–null mice, and the functional benefit conferred by estradiol treatment after MI in wild-type mice was significantly attenuated. Conclusions— Estradiol preserves the integrity of ischemic tissue by augmenting the mobilization and incorporation of BM-derived EPCs into sites of neovascularization by eNOS-mediated augmentation of MMP-9 expression in the BM. Moreover, these data have broader implications with regard to our understanding of the role of EPCs in post-MI recovery and on the sex discrepancy in cardiac events.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3