Suppression of Endothelial AGO1 Promotes Adipose Tissue Browning and Improves Metabolic Dysfunction

Author:

Tang Xiaofang1,Miao Yifei1,Luo Yingjun1,Sriram Kiran12,Qi Zhijie3,Lin Feng-Mao1,Gu Yusu4,Lai Chih-Hung1,Hsu Chien-Yi5,Peterson Kirk L.4,Van Keuren-Jensen Kendall6,Fueger Patrick T.27,Yeo Gene W.8,Natarajan Rama12,Zhong Sheng3,Chen Zhen Bouman12ORCID

Affiliation:

1. Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA.

2. Irell and Manella Graduate School of Biological Sciences (K.S., P.T.F., R.N., Z.C.), City of Hope, Duarte, CA.

3. Department of Bioengineering (Z.Q., S.Z.), University of California at San Diego, La Jolla.

4. Department of Medicine (Y.G., K.L.P.), University of California at San Diego, La Jolla.

5. Department of Internal Medicine, Taipei Medical University Hospital, Taiwan (C.Y.H).

6. Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ (K.V.K-J.).

7. Department of Molecular and Cellular Endocrinology (P.T.F.), City of Hope, Duarte, CA.

8. Department of Cellular and Molecular Medicine (G.W.Y.), University of California at San Diego, La Jolla.

Abstract

Background: Metabolic disorders such as obesity and diabetes mellitus can cause dysfunction of endothelial cells (ECs) and vascular rarefaction in adipose tissues. However, the modulatory role of ECs in adipose tissue function is not fully understood. Other than vascular endothelial growth factor–vascular endothelial growth factor receptor-mediated angiogenic signaling, little is known about the EC-derived signals in adipose tissue regulation. We previously identified Argonaute 1 (AGO1; a key component of microRNA-induced silencing complex) as a crucial regulator in hypoxia-induced angiogenesis. In this study, we intend to determine the AGO1-mediated EC transcriptome, the functional importance of AGO1-regulated endothelial function in vivo, and the relevance to adipose tissue function and obesity. Methods: We generated and subjected mice with EC-AGO1 deletion (EC-AGO1-knockout [KO]) and their wild-type littermates to a fast food–mimicking, high-fat high-sucrose diet and profiled the metabolic phenotypes. We used crosslinking immunoprecipitation- and RNA-sequencing to identify the AGO1-mediated mechanisms underlying the observed metabolic phenotype of EC-AGO1-KO. We further leveraged cell cultures and mouse models to validate the functional importance of the identified molecular pathway, for which the translational relevance was explored using human endothelium isolated from healthy donors and donors with obesity/type 2 diabetes mellitus. Results: We identified an antiobesity phenotype of EC-AGO1-KO, evident by lower body weight and body fat, improved insulin sensitivity, and enhanced energy expenditure. At the organ level, we observed the most significant phenotype in the subcutaneous and brown adipose tissues of KO mice, with greater vascularity and enhanced browning and thermogenesis. Mechanistically, EC-AGO1 suppression results in inhibition of thrombospondin-1 ( THBS1 /TSP1), an antiangiogenic and proinflammatory cytokine that promotes insulin resistance. In EC-AGO1-KO mice, overexpression of TSP1 substantially attenuated the beneficial phenotype. In human endothelium isolated from donors with obesity or type 2 diabetes mellitus, AGO1 and THBS1 are expressed at higher levels than the healthy controls, supporting a pathological role of this pathway. Conclusions: Our study suggests a novel mechanism by which ECs, through the AGO1-TSP1 pathway, control vascularization and function of adipose tissues, insulin sensitivity, and whole-body metabolic state.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3