Extracellular Matrix Scaffold for Cardiac Repair

Author:

Robinson Keith A.1,Li Jinshen1,Mathison Megumi1,Redkar Alka1,Cui Jianhua1,Chronos Nicolas A.F.1,Matheny Robert G.1,Badylak Stephen F.1

Affiliation:

1. From the American Cardiovascular Research Institute (K.A.R., J.L., M.M., A.R., J.C., N.A.F.C., R.G.M.), Norcross, Ga; Cardiac Surgical Associates, PC (R.G.M.), Atlanta, Ga; and McGowan Institute of Regenerative Medicine (S.F.B.), Pittsburgh, Pa.

Abstract

Background— Heart failure remains a significant problem. Tissue-engineered cardiac patches offer potential to treat severe heart failure. We studied an extracellular matrix scaffold for repairing the infarcted left ventricle. Methods and Results— Pigs (n=42) underwent left ventricular (LV) infarction. At 6 to 8 weeks, either 4-layer multilaminate urinary bladder-derived extracellular matrix or expanded polytetrafluoroethlyene (ePTFE) was implanted as full-thickness LV wall patch replacement. At 1-week, 1-month, or 3-month intervals, pigs were terminated. After macroscopic examination, samples of tissue were prepared for histology, immunocytochemistry, and analysis of cell proportions by flow cytometry. One-week and 1-month patches were intact with thrombus and inflammation; at 1 month, there was also tissue with spindle-shaped cells in proteoglycan-rich and collagenous matrix. More α-smooth muscle actin-positive cells were present in urinary bladder matrix (UBM) than in ePTFE (22.2±3.3% versus 8.4±2.7%; P =0.04). At 3 months, UBM was bioresorbed, and a collagen-rich vascularized tissue with numerous myofibroblasts was present. Isolated regions of α-sarcomeric actin-positive, intensely α-smooth muscle actin-immunopositive, and striated cells were observed. ePTFE at 3 months had foreign-body response with necrosis and calcification. Flow cytometry showed similarities of cells from UBM to normal myocardium, whereas ePTFE had limited cardiomyocyte markers. Conclusions— Appearance of a fibrocellular tissue that included contractile cells accompanied biodegradation of UBM when implanted as an LV-free wall infarction patch. UBM appears superior to synthetic material for cardiac patching and trends toward myocardial replacement at 3 months.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3