Affiliation:
1. From the American Cardiovascular Research Institute (K.A.R., J.L., M.M., A.R., J.C., N.A.F.C., R.G.M.), Norcross, Ga; Cardiac Surgical Associates, PC (R.G.M.), Atlanta, Ga; and McGowan Institute of Regenerative Medicine (S.F.B.), Pittsburgh, Pa.
Abstract
Background—
Heart failure remains a significant problem. Tissue-engineered cardiac patches offer potential to treat severe heart failure. We studied an extracellular matrix scaffold for repairing the infarcted left ventricle.
Methods and Results—
Pigs (n=42) underwent left ventricular (LV) infarction. At 6 to 8 weeks, either 4-layer multilaminate urinary bladder-derived extracellular matrix or expanded polytetrafluoroethlyene (ePTFE) was implanted as full-thickness LV wall patch replacement. At 1-week, 1-month, or 3-month intervals, pigs were terminated. After macroscopic examination, samples of tissue were prepared for histology, immunocytochemistry, and analysis of cell proportions by flow cytometry. One-week and 1-month patches were intact with thrombus and inflammation; at 1 month, there was also tissue with spindle-shaped cells in proteoglycan-rich and collagenous matrix. More α-smooth muscle actin-positive cells were present in urinary bladder matrix (UBM) than in ePTFE (22.2±3.3% versus 8.4±2.7%;
P
=0.04). At 3 months, UBM was bioresorbed, and a collagen-rich vascularized tissue with numerous myofibroblasts was present. Isolated regions of α-sarcomeric actin-positive, intensely α-smooth muscle actin-immunopositive, and striated cells were observed. ePTFE at 3 months had foreign-body response with necrosis and calcification. Flow cytometry showed similarities of cells from UBM to normal myocardium, whereas ePTFE had limited cardiomyocyte markers.
Conclusions—
Appearance of a fibrocellular tissue that included contractile cells accompanied biodegradation of UBM when implanted as an LV-free wall infarction patch. UBM appears superior to synthetic material for cardiac patching and trends toward myocardial replacement at 3 months.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
200 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献