Electrophysiological Consequences of Dyssynchronous Heart Failure and Its Restoration by Resynchronization Therapy

Author:

Aiba Takeshi1,Hesketh Geoffrey G.1,Barth Andreas S.1,Liu Ting1,Daya Samantapudi1,Chakir Khalid1,Dimaano Veronica Lea1,Abraham Theodore P.1,O'Rourke Brian1,Akar Fadi G.1,Kass David A.1,Tomaselli Gordon F.1

Affiliation:

1. From the Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Md.

Abstract

Background— Cardiac resynchronization therapy (CRT) is widely applied in patients with heart failure and dyssynchronous contraction (DHF), but the electrophysiological consequences of CRT in heart failure remain largely unexplored. Methods and Results— Adult dogs underwent left bundle-branch ablation and either right atrial pacing (190 to 200 bpm) for 6 weeks (DHF) or 3 weeks of right atrial pacing followed by 3 weeks of resynchronization by biventricular pacing at the same pacing rate (CRT). Isolated left ventricular anterior and lateral myocytes from nonfailing (control), DHF, and CRT dogs were studied with the whole-cell patch clamp. Quantitative polymerase chain reaction and Western blots were performed to measure steady state mRNA and protein levels. DHF significantly reduced the inward rectifier K + current ( I K1 ), delayed rectifier K + current ( I K ), and transient outward K + current ( I to ) in both anterior and lateral cells. CRT partially restored the DHF-induced reduction of I K1 and I K but not I to , consistent with trends in the changes in steady state K + channel mRNA and protein levels. DHF reduced the peak inward Ca 2+ current ( I Ca ) density and slowed I Ca decay in lateral compared with anterior cells, whereas CRT restored peak I Ca amplitude but did not hasten decay in lateral cells. Calcium transient amplitudes were depressed and the decay was slowed in DHF, especially in lateral myocytes. CRT hastened the decay in both regions and increased the calcium transient amplitude in lateral but not anterior cells. No difference was found in Ca V 1.2 (α1C) mRNA or protein expression, but reduced Ca V β2 mRNA was found in DHF cells. DHF reduced phospholamban, ryanodine receptor, and sarcoplasmic reticulum Ca 2+ ATPase and increased Na + -Ca 2+ exchanger mRNA and protein. CRT did not restore the DHF-induced molecular remodeling, except for sarcoplasmic reticulum Ca 2+ ATPase. Action potential durations were significantly prolonged in DHF, especially in lateral cells, and CRT abbreviated action potential duration in lateral but not anterior cells. Early afterdepolarizations were more frequent in DHF than in control cells and were reduced with CRT. Conclusions— CRT partially restores DHF-induced ion channel remodeling and abnormal Ca 2+ homeostasis and attenuates the regional heterogeneity of action potential duration. The electrophysiological changes induced by CRT may suppress ventricular arrhythmias, contribute to the survival benefit of this therapy, and improve the mechanical performance of the heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3