Bone Marrow–Derived Cells Are Involved in the Pathogenesis of Cardiac Hypertrophy in Response to Pressure Overload

Author:

Endo Jin1,Sano Motoaki1,Fujita Jun1,Hayashida Kentaro1,Yuasa Shinsuke1,Aoyama Naoki1,Takehara Yuji1,Kato Osamu1,Makino Shinji1,Ogawa Satoshi1,Fukuda Keiichi1

Affiliation:

1. From the Department of Regenerative Medicine and Advanced Cardiac Therapeutics (J.E., M.S., J.F., K.H., S.Y., S.M., K.F.), Cardiology Division (J.E., J.F., K.H., S.O.), Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan, and Advanced Medical Research Institute of Fertility (N.A., Y.T., O.K.), Kato Lady’s Clinic, Tokyo, Japan.

Abstract

Background— Bone marrow (BM) cells possess broad differentiation potential and can form various cell lineages in response to pathophysiological cues. The present study investigated whether BM-derived cells contribute to the pathogenesis of cardiac hypertrophy, as well as the possible cellular mechanisms involved in such a role. Methods and Results— Lethally irradiated wild-type mice were transplanted with BM cells from enhanced green fluorescent protein–transgenic mice. The chimeric mice were subjected to either prolonged hypoxia or transverse aortic constriction. BM-derived enhanced green fluorescent protein–expressing cardiomyocytes increased in number over time, emerging predominantly in the pressure-overloaded ventricular myocardium, although they constituted <0.01% of recipient cardiomyocytes. To determine whether BM-derived cardiomyocytes were derived from cell fusion or transdifferentiation at the single-cell level, lethally irradiated Cre mice were transplanted with BM cells from the double-conditional Cre reporter mouse line Z/EG. BM-derived cardiomyocytes were shown to arise from both cell fusion and transdifferentiation. Interestingly, BM-derived myofibroblasts expressing both vimentin and α-smooth muscle actin were concentrated in the perivascular fibrotic area. These cells initially expressed MAC-1/CD14 but lost expression of these markers during the chronic phase, which suggests that they were derived from monocytes. A similar phenomenon occurred in cultured human monocytes, most of which ultimately expressed vimentin and α-smooth muscle actin. Conclusions— We found that BM-derived cells were involved in the pathogenesis of cardiac hypertrophy via the dual mechanisms of cell fusion and transdifferentiation. Moreover, the present results suggest that BM-derived monocytes accumulating in the perivascular space might play an important role in the formation of perivascular fibrosis via direct differentiation into myofibroblasts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3