An α1A-Adrenergic–Extracellular Signal-Regulated Kinase Survival Signaling Pathway in Cardiac Myocytes

Author:

Huang Yuan1,Wright Casey D.1,Merkwan Chastity L.1,Baye Nichole L.1,Liang Qiangrong1,Simpson Paul C.1,O’Connell Timothy D.1

Affiliation:

1. From the Cardiovascular Research Institute at Sanford Research/USD and the Department of Medicine at The University of South Dakota School of Medicine, Sioux Falls, SD (Y.H., C.D.W., C.M., N.L.B., Q.L., T.D.O.), and the Cardiology Division, San Francisco Veterans Affairs Medical Center and the Cardiovascular Research Institute and Department of Medicine at The University of California at San Francisco, San Francisco (P.C.S.).

Abstract

Background— In α1-AR knockout (α1ABKO) mice that lacked cardiac myocyte α1-adrenergic receptor (α1-AR) binding, aortic constriction induced apoptosis, dilated cardiomyopathy, and death. However, it was unclear whether these effects were attributable to a lack of cardiac myocyte α1-ARs and whether the α1A, α1B, or both subtypes mediated protection. Therefore, we investigated α1A and α1B subtype–specific survival signaling in cultured cardiac myocytes to test for a direct protective effect of α1-ARs in cardiac myocytes. Methods and Results— We cultured α1ABKO myocytes and reconstituted α1-AR signaling with adenoviruses expressing α1-GFP fusion proteins. Myocyte death was induced by norepinephrine, doxorubicin, or H 2 O 2 and was measured by annexin V/propidium iodide staining. In α1ABKO myocytes, all 3 stimuli significantly increased apoptosis and necrosis. Reconstitution of the α1A subtype, but not the α1B, rescued α1ABKO myocytes from cell death induced by each stimulus. To address the mechanism, we examined α1-AR activation of extracellular signal-regulated kinase (ERK). In α1ABKO hearts, aortic constriction failed to activate ERK, and in α1ABKO myocytes, expression of a constitutively active MEK1 rescued α1ABKO myocytes from norepinephrine-induced death. In addition, only the α1A-AR activated ERK in α1ABKO myocytes, and expression of a dominant-negative MEK1 completely blocked α1A survival signaling in α1ABKO myocytes. Conclusions— Our results demonstrate a direct protective effect of the α1A subtype in cardiac myocytes and define an α1A-ERK signaling pathway that is required for myocyte survival. Absence of the α1A-ERK pathway can explain the failure to activate ERK after aortic constriction in α1ABKO mice and can contribute to the development of apoptosis, dilated cardiomyopathy, and death.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3