Decreased Microvascular Nitric Oxide–Dependent Vasodilation in Postural Tachycardia Syndrome

Author:

Medow Marvin S.1,Minson Christopher T.1,Stewart Julian M.1

Affiliation:

1. From New York Medical College, Valhalla (M.S.M., J.M.S.), and University of Oregon, Eugene (C.T.M.).

Abstract

Background— One variant of postural tachycardia syndrome (POTS), designated low-flow POTS, is associated with decreased peripheral blood flow related to impaired local vascular regulation. Methods and Results— To investigate the hypothesis that microvascular endothelial dysfunction produces decreased peripheral blood flow in low-flow POTS, we performed experiments using laser-Doppler flowmetry (LDF) combined with iontophoresis in 15 low-flow POTS patients, 17 normal-flow POTS patients, and 13 healthy reference volunteers varying in age from 14 to 22 years. We tested whether α-adrenergic vasoregulation was impaired using iontophoretic delivery of tyramine, phentolamine, and bretylium followed by a norepinephrine dose response. We tested endothelial-dependent and -independent receptor-mediated vasodilation by measuring acetylcholine and sodium nitroprusside dose responses. We tested whether nitric oxide–dependent vasodilation was different in these groups by testing the local thermal hyperemic response to saline used as a reference compared with the nitric oxide synthase inhibitor N G -nitro- l -arginine methyl ester (L-NAME). Adrenergic and receptor-dependent cutaneous vasoregulation was similar for low-flow POTS, normal-flow POTS, and reference subjects. Thermal hyperemia produced distinctly different findings: there was marked attenuation of the nitric oxide–sensitive plateau during prolonged heating, which was insensitive to L-NAME in low-flow POTS subjects. The pattern of thermal hyperemia response in low-flow POTS subjects during saline administration resembled the pattern in reference subjects during L-NAME administration and was minimally affected by L-NAME. Conclusions— The data suggest that flow-dependent nitric oxide release is reduced in low-flow POTS. This may account for local flow regulation abnormalities.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3