Toll-Like Receptor 7 Protects From Atherosclerosis by Constraining “Inflammatory” Macrophage Activation

Author:

Salagianni Maria1,Galani Ioanna E.1,Lundberg Anna M.1,Davos Constantinos H.1,Varela Aimilia1,Gavriil Ariana1,Lyytikäinen Leo-Pekka1,Lehtimäki Terho1,Sigala Fragiska1,Folkersen Lasse1,Gorgoulis Vassilis1,Lenglet Sébastien1,Montecucco Fabrizio1,Mach François1,Hedin Ulf1,Hansson Göran K.1,Monaco Claudia1,Andreakos Evangelos1

Affiliation:

1. From the Center for Immunology and Transplantation (M.S., I.E.G., A.G., E.A.), Center for Clinical Research (C.H.D., A.V.), and Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece (V.G.); Center for Molecular Medicine, Department of Medicine at Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden (A.M.L., L.F., U.H., G.K.H.); Department of Clinical Chemistry, Tampere University Hospital & University of Tampere Medical School,...

Abstract

Background Toll-like receptors (TLRs) have long been considered to be major culprits in the development of atherosclerosis, contributing both to its progression and clinical complications. However, evidence for most TLRs beyond TLR2 and TLR4 is lacking. Methods and Results We used experimental mouse models, human atheroma cultures, and well-established human biobanks to investigate the role of TLR7 in atherosclerosis. We report the unexpected finding that TLR7, a receptor recognizing self–nucleic acid complexes, is protective in atherosclerosis. In Apoe −/− mice, functional inactivation of TLR7 resulted in accelerated lesion development, increased stenosis, and enhanced plaque vulnerability as revealed by Doppler ultrasound and/or histopathology. Mechanistically, TLR7 interfered with macrophage proinflammatory responses to TLR2 and TLR4 ligands, reduced monocyte chemoattractant protein-1 production, and prevented expansion of Ly6C hi inflammatory monocytes and accumulation of inflammatory M1 macrophages into developing atherosclerotic lesions. In human carotid endarterectomy specimens TLR7 levels were consistently associated with an M2 anti-inflammatory macrophage signature (interleukin [IL]-10, IL-1RA, CD163, scavenger and C-type lectin receptors) and collagen genes, whereas they were inversely related or unrelated to proinflammatory mediators (IL-12/IL-23, interferon beta, interferon gamma, CD40L) and platelet markers. Moreover, in human atheroma cultures, TLR7 activation selectively suppressed the production of key proatherogenic factors such as monocyte chemoattractant protein-1 and tumor necrosis factor without affecting IL-10. Conclusions These findings provide evidence for a beneficial role of TLR7 in atherosclerosis by constraining inflammatory macrophage activation and cytokine production. This challenges the prevailing concept that all TLRs are pathogenic and supports the exploitation of the TLR7 pathway for therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3