Pulsatile Myocardial Tubes Fabricated With Cell Sheet Engineering

Author:

Sekine Hidekazu1,Shimizu Tatsuya1,Yang Joseph1,Kobayashi Eiji1,Okano Teruo1

Affiliation:

1. From the Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan (H.S., T.S., J.Y., T.O.); and Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan (E.K.).

Abstract

Background— Tissue engineering approaches involving the direct transplantation of cardiac patches have received significant attention as alternative methods for the treatment of damaged hearts. In contrast, we used cardiomyocyte sheets harvested from temperature-responsive culture dishes to create pulsatile myocardial tubes and examined their in vivo function and survival. Methods and Results— Neonatal rat cardiomyocyte sheets were sequentially wrapped around a resected adult rat thoracic aorta and transplanted in place of the abdominal aorta of athymic rats (n=17). Four weeks after transplantation, the myocardial tubes demonstrated spontaneous and synchronous pulsations independent of the host heartbeat. Independent graft pressures with a magnitude of 5.9±1.7 mm Hg due to their independent pulsations were also observed (n=4). Additionally, histological examination and transmission electron microscopy indicated that the beating tubes were composed of cardiac tissues that resemble the native heart. Finally, when myocardial tubes used for aortic replacement were compared with grafts implanted in the abdominal cavity (n=7), we observed significantly increased tissue thickness, as well as expression of brain natriuretic peptide, myosin heavy chain-α, and myosin heavy chain-β. Conclusions— Functional myocardial tubes that have the potential for circulatory support can be created with cell sheet engineering. These results also suggest that pulsation due to host blood flow within the lumen of the myocardial tubes has a profound effect on stimulating cardiomyocyte hypertrophy and growth. These results demonstrate a novel approach for the future development of engineered cardiac tissues with the ability for independent cardiac assistance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3