DYRK1B-STAT3 Drives Cardiac Hypertrophy and Heart Failure by Impairing Mitochondrial Bioenergetics

Author:

Zhuang Lingfang12,Jia Kangni12,Chen Chen13ORCID,Li Zhigang12,Zhao Jiaxin14,Hu Jian14,Zhang Hang14,Fan Qin12,Huang Chunkai14,Xie Hongyang12ORCID,Lu Lin12,Shen Weifeng12,Ning Guang14,Wang Jiqiu14ORCID,Zhang Ruiyan14,Chen Kang1,Yan Xiaoxiang12ORCID

Affiliation:

1. Department of Cardiovascular Medicine (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., K.C., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.

2. Ruijin Hospital, Institute of Cardiovascular Diseases (L.Z., K..J., Z.L., J.Z., J.H., H.Z., Q.F., C.H., H.X., L.L., W.S., R.Z., X.Y.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.

3. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C.).

4. Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases (G.N., J.W.), Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.

Abstract

Background: Heart failure is a global public health issue that is associated with increasing morbidity and mortality. Previous studies have suggested that mitochondrial dysfunction plays critical roles in the progression of heart failure; however, the underlying mechanisms remain unclear. Because kinases have been reported to modulate mitochondrial function, we investigated the effects of DYRK1B (dual-specificity tyrosine-regulated kinase 1B) on mitochondrial bioenergetics, cardiac hypertrophy, and heart failure. Methods: We engineered DYRK1B transgenic and knockout mice and used transverse aortic constriction to produce an in vivo model of cardiac hypertrophy. The effects of DYRK1B and its downstream mediators were subsequently elucidated using RNA-sequencing analysis and mitochondrial functional analysis. Results: We found that DYRK1B expression was clearly upregulated in failing human myocardium and in hypertrophic murine hearts, as well. Cardiac-specific DYRK1B overexpression resulted in cardiac dysfunction accompanied by a decline in the left ventricular ejection fraction, fraction shortening, and increased cardiac fibrosis. In striking contrast to DYRK1B overexpression, the deletion of DYRK1B mitigated transverse aortic constriction–induced cardiac hypertrophy and heart failure. Mechanistically, DYRK1B was positively associated with impaired mitochondrial bioenergetics by directly binding with STAT3 to increase its phosphorylation and nuclear accumulation, ultimately contributing toward the downregulation of PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α). Furthermore, the inhibition of DYRK1B or STAT3 activity using specific inhibitors was able to restore cardiac performance by rejuvenating mitochondrial bioenergetics. Conclusions: Taken together, the findings of this study provide new insights into the previously unrecognized role of DYRK1B in mitochondrial bioenergetics and the progression of cardiac hypertrophy and heart failure. Consequently, these findings may provide new therapeutic options for patients with heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3