Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy

Author:

Glukhov Alexey V.1,Fedorov Vadim V.1,Kalish Paul W.1,Ravikumar Vinod K.1,Lou Qing1,Janks Deborah1,Schuessler Richard B.1,Moazami Nader1,Efimov Igor R.1

Affiliation:

1. From the Departments of Biomedical Engineering (A.V.G., V.V.F., P.W.K., V.K.R., Q.L., D.J., I.R.E.) and Surgery (R.B.S., N.M.), Washington University in St. Louis, MO.

Abstract

Background— Several arrhythmogenic mechanisms have been inferred from animal heart failure models. However, the translation of these hypotheses is difficult because of the lack of functional human data. We aimed to investigate the electrophysiological substrate for arrhythmia in human end-stage nonischemic cardiomyopathy. Methods and Results— We optically mapped the coronary-perfused left ventricular wedge preparations from human hearts with end-stage nonischemic cardiomyopathy (heart failure, n=10) and nonfailing hearts (NF, n=10). Molecular remodeling was studied with immunostaining, Western blotting, and histological analyses. Heart failure produced heterogeneous prolongation of action potential duration resulting in the decrease of transmural action potential duration dispersion (64±12 ms versus 129±15 ms in NF, P <0.005). In the failing hearts, transmural activation was significantly slowed from the endocardium (39±3 cm/s versus 49±2 cm/s in NF, P =0.008) to the epicardium (28±3 cm/s versus 40±2 cm/s in NF, P =0.008). Conduction slowing was likely due to connexin 43 (Cx43) downregulation, decreased colocalization of Cx43 with N-cadherin (40±2% versus 52±5% in NF, P =0.02), and an altered distribution of phosphorylated Cx43 isoforms by the upregulation of the dephosphorylated Cx43 in both the subendocardium and subepicardium layers. Failing hearts further demonstrated spatially discordant conduction velocity alternans which resulted in nonuniform propagation discontinuities and wave breaks conditioned by strands of increased interstitial fibrosis (fibrous tissue content in heart failure 16.4±7.7 versus 9.9±1.4% in NF, P =0.02). Conclusions— Conduction disorder resulting from the anisotropic downregulation of Cx43 expression, the reduction of Cx43 phosphorylation, and increased fibrosis is likely to be a critical component of arrhythmogenic substrate in patients with nonischemic cardiomyopathy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3