Directed and Systematic Differentiation of Cardiovascular Cells From Mouse Induced Pluripotent Stem Cells

Author:

Narazaki Genta1,Uosaki Hideki1,Teranishi Mizue1,Okita Keisuke1,Kim Bongju1,Matsuoka Satoshi1,Yamanaka Shinya1,Yamashita Jun K.1

Affiliation:

1. From the Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan (G.N., H.U., M.T., J.K.Y.); Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan (K.O., S.Y.); Center for iPS Cell Research and Application, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan (K.O., S.Y., J.K.Y.); Department of Physiology and Biophysics, Kyoto University...

Abstract

Background— Induced pluripotent stem (iPS) cells are a novel stem cell population induced from mouse and human adult somatic cells through reprogramming by transduction of defined transcription factors. However, detailed differentiation properties and the directional differentiation system of iPS cells have not been demonstrated. Methods and Results— Previously, we established a novel mouse embryonic stem (ES) cell differentiation system that can reproduce the early differentiation processes of cardiovascular cells. We applied our ES cell system to iPS cells and examined directional differentiation of mouse iPS cells to cardiovascular cells. Flk1 (also designated as vascular endothelial growth factor receptor-2)-expressing mesoderm cells were induced from iPS cells after ≈4-day culture for differentiation. Purified Flk1 + cells gave rise to endothelial cells and mural cells by addition of vascular endothelial growth factor and serum. Arterial, venous, and lymphatic endothelial cells were also successfully induced. Self-beating cardiomyocytes could be induced from Flk1 + cells by culture on OP9 stroma cells. Time course and efficiency of the differentiation were comparable to those of mouse ES cells. Occasionally, reexpression of transgene mRNAs, including c-myc, was observed in long-term differentiation cultures. Conclusions— Various cardiovascular cells can be systematically induced from iPS cells. The differentiation properties of iPS cells are almost completely identical to those of ES cells. This system would greatly contribute to a novel understanding of iPS cell biology and the development of novel cardiovascular regenerative medicine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 419 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3