Novel Injectable Bioartificial Tissue Facilitates Targeted, Less Invasive, Large-Scale Tissue Restoration on the Beating Heart After Myocardial Injury

Author:

Kofidis Theo1,Lebl Darren R.1,Martinez Eliana C.1,Hoyt Grant1,Tanaka Masashi1,Robbins Robert C.1

Affiliation:

1. From Cardiothoracic Surgery (T.K., D.R.L., G.H., M.T., R.C.R.) and Pediatric Cardiology (E.C.M.), Stanford University Medical School, Stanford, Calif.

Abstract

Background— Implantation of bioartificial patches distorts myocardial geometry, and functional improvement of the recipient heart is usually attributed to reactive angiogenesis around the graft. With the liquid bioartificial tissue compound used in this study, we achieved targeted large-scale support of the infarcted left ventricular wall and improvement of heart function. Methods and Results— A liquid compound consisting of growth factor-free Matrigel and 10 6 green fluorescent protein (GFP)-positive mouse (129sv) embryonic stem cells (ESCs) was generated and injected into the area of ischemia after ligation of the left anterior descending artery in BALB/c mice (group I). Left anterior descending artery-ligated mice (group II) and mice with Matrigel (group III) or ESC treatment alone (group IV) were used as the control groups (n=5 in all groups). The hearts were harvested for histology 2 weeks later after echocardiographic assessment with a 15-MHz probe. The liquid injectable tissue solidified at body temperature and retained the geometry of the infarcted lateral wall. Immunofluorescence stains revealed voluminous GFP grafts. The quality of restoration (graft/infarct area ratio) was 45.5±10.8% in group I and 29.1±6.7% in group IV ( P =0.034). ESCs expressed connexin 43 at intercellular contact sites. The mice treated with the compound had a superior heart function compared with the controls ( P <0.0001 by ANOVA/Bonferroni test; group I: 27.1±5.4, group II:11.9±2.4, group III:16.2±2.8, group IV: 19.1±2.7). Conclusions— Injectable bioartificial tissue restores the heart’s geometry and function in a targeted and nondistorting fashion. This new method paves the way for novel interventional approaches to myocardial repair, using both stem cells and matrices.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3