Notch-1 Inhibition Promotes Immune Regulation in Transplantation Via Regulatory T Cell–Dependent Mechanisms

Author:

Magee Ciara N.12,Murakami Naoka1,Borges Thiago J.1,Shimizu Tetsunosuke1,Safa Kassem1,Ohori Shunsuke1,Cai Songjie1,Uffing Audrey1,Azzi Jamil1,Elyaman Wassim3,Charbonnier Louis-Marie4,Liu Kaifeng5,Toprak Demet6,Visner Gary5,Chatila Talal A.4,Siebel Christian W.7,Najafian Nader1,Riella Leonardo V.1

Affiliation:

1. Transplantation Research Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.).

2. University College London Department of Renal Medicine, Centre for Transplantation, Royal Free Hospital, United Kingdom (C.N.M.).

3. Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY (W.E.).

4. Division of Immunology (L.-M.C., T.A.C.), Children’s Hospital Boston, Harvard Medical School, MA.

5. Pulmonary and Respiratory Diseases Division (K.L., G.V.), Children’s Hospital Boston, Harvard Medical School, MA.

6. Department of Pediatrics, Seattle Children’s Hospital, WA (D.T.).

7. Department of Molecular Biology, Genentech Inc, South San Francisco, CA (C.W.S.).

Abstract

Background: Transplantation is the treatment of choice for many patients with end-stage organ disease. Despite advances in immunosuppression, long-term outcomes remain suboptimal, hampered by drug toxicity and immune-mediated injury, the leading cause of late graft loss. The development of therapies that promote regulation while suppressing effector immunity is imperative to improve graft survival and minimize conventional immunosuppression. Notch signaling is a highly conserved pathway pivotal to T-cell differentiation and function, rendering it a target of interest in efforts to manipulate T cell–mediated immunity. Methods: We investigated the pattern of Notch-1 expression in effector and regulatory T cells (Tregs) in both murine and human recipients of a solid-organ transplant. Using a selective human anti-Notch-1 antibody (aNotch-1), we examined the effect of Notch-1 receptor inhibition in full major histocompatibility complex–mismatch murine cardiac and lung transplant models, and in a humanized skin transplant model. On the basis of our findings, we further used a genetic approach to investigate the effect of selective Notch-1 inhibition in Tregs. Results: We observed an increased proportion of Tregs expressing surface and intracellular (activated) Notch-1 in comparison with conventional T cells, both in mice with transplants and in the peripheral blood of patients with transplants. In the murine cardiac transplant model, peritransplant administration of aNotch-1 (days 0, 2, 4, 6, 8, and 10) significantly prolonged allograft survival in comparison with immunoglobulin G–treated controls. Similarly, aNotch-1 treatment improved both histological and functional outcomes in the murine lung transplant model. The use of aNotch-1 resulted in a reduced proportion of both splenic and intragraft conventional T cells, while increasing the proportion of Tregs. Furthermore, Tregs isolated from aNotch-1–treated mice showed enhanced suppressive function on a per-cell basis, confirmed with selective Notch-1 deletion in Tregs (Foxp3 EGFPCre Notch1 fl/fl ). Notch-1 blockade inhibited the mammalian target of rapamycin pathway and increased the phosphorylation of STAT5 (signal transducer and activator of transcription 5) in murine Tregs. Notch-1 low Tregs isolated from human peripheral blood exhibited more potent suppressive capacity than Notch-1 high Tregs. Last, the combination of aNotch-1 with costimulation blockade induced long-term tolerance in a cardiac transplant model, and this tolerance was dependent on CTLA-4 (cytotoxic T-lymphocyte–associated antigen-4) signaling. Conclusions: Our data reveal a promising, clinically relevant approach for immune modulation in transplantation by selectively targeting Notch-1.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3